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Abstract 
The Henry George Theorem, which is originally established in a static model, asserts 

that the cost of public good provision should be equal to the total revenue of the land 

rent to achieve the optimal size of population of each region. This paper examines this 

theorem in a dynamic framework of overlapping generations model, assuming that the 

government maximizes the sum of the utilities of the generations of finite periods.  We 

show that the optimal path converges to the stationary state, however, it does not stay 

on it.  We derive that the theorem is valid only in the stationary state, and no longer 

valid along the optimal path.  
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1.  Introduction 
 

The purpose of this paper is to examine the Henry George theorem in a dynamic 

framework.   

The Henry George Theorem is about the optimal distribution of the population 

among regions in a country, or in other words, about the optimal number of regions in a 

country assuming the total population is fixed.   This theorem asserts that the optimal 

level of the expenditure on the public good equals the aggregate land rent.  That is, the 

revenue of the land rent should be all taxed and the tax-revenue should be all spent only 

for the provision of the public good.1   Then the optimal number of the population in 

each region is realized. 

  The Henry George theorem is related with the efficiency of the production side of the 

economy, and it guarantees the maximum per-capita consumption level for any given 

level of the public good.  It does not relate to the optimal supply of the public goods.   

Together with the condition of the optimal supply of the public good shown by 

Samuelson (1954), the total optimality is attained.  The Henry George theorem was 

first introduced into regional economics by Flatters, Henderson and Mieszkowski (1974) 

as the “Golden Rule”.  The name “the Henry George theorem” was first used by Arnott 

and Stiglitz (1979), based on the Single Tax theory of Henry George (1942). 1  

Henry George theorem was discussed in the framework of statics.  Later a number 

of variations of this theorem had been published, however, most of them were in the 

static framework. Hartwick (1980) examined the theorem when the regions are 

heterogeneous, and derived that the theorem should be modified.  Kanemoto, et al., 

(1996) discussed whether Tokyo exceeds the optimal size by using the idea of the Henry 

George theorem.   

We examine the Henry George theorem in a dynamic framework, because it is 

important for policy makers to know whether taking the Henry George policy is 

beneficial or not in a growing economy, or non-stationary economy in general.   We can 

imagine that, because the Henry George theorem holds in a static model, it also holds at 

the stationary state in dynamics.   Hence our main problem is whether it holds or not 

at  transient states.    

Fu (2005) discussed the theorem in a dynamic setting.  He used a simple  

continuous dynamic model and derived that the present value of land rents over all time 

periods equals the present value of public goods expenditure over all time periods. 

Our model uses a two-period overlapping generations model.  The individuals 

                                                  
1 The book was originally published in 1879. 
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determine the consumption of the two periods, the young age and the old age, given the 

public goods and the population of each region at each period. The government 

maximizes the sum of the utilities of each generation of the finite planning periods, 

and the control variables are the public goods and the size of the population of each 

period of each region. The government plays the role of the Stackelberg leader, while 

the residents the followers.  We derive the result that the Henry George theorem 

holds at the stationary state.  In fact, the optimal path converges to the stationary 

state, however, the path does not stay on it.  Thus, the Henry George theorem does 

not hold in any period.  However, it nearly holds when the path converges and stays in 

the neighborhood of it.    

We assumed that the durable good in this economy is only the land, hence, in order 

to save the income and convey the asset from the young age to the old one, people have 

to buy the land.  At the final period T , any people do not want to buy the land because 

there is no period 1T + .  So if there is no net land rent income at period 1T − , people 

in this period do not buy the land.   Thus if the government taxes 100% on the land 

rent at each period, then the people of all periods do not want to buy the land. We want 

to check that this really happens in the optimal path or not.  This is the reason why we 

assume the finite horizon planning period.   

In our dynamics, even the public goods are not storable.  The public good in our 

model can be interpreted as a consumption good jointly consumable without congestion 

such as defense service.   

In the next section, we will present the basic model.  In section III, the government 

policy to maximize the welfare is discussed, and we derive the optimal path of the 

economy.  In section IV, we examine the property of the optimal path and consider 

whether the Henry George theorem holds or not. In section V, we conclude our 

discussions.   

 

 

II. The Model 
 

The population of a country is distributed among homogeneous regions.  We 

assume that the number of the population of a country is fixed and there is no 

population growth.  Each individual lives for two periods.   He works at the first 

period in the agricultural sector, and earns the wage income w , which equals the 

marginal productivity of labor.  He consumes a part of the wage income and saves the 

rest.   As the means of the saving, he buys the land.   In the next period, he does not 
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work, but he receives the land rent and sells the land at the end of the period.  The 

income of the old period is spent on the consumption at the period.    The generations 

overlap, and there are young workers and the same number of old land owners, since 

we assume that there is no population growth.   Population is equally distributed 

over the homogeneous regions in a country.2  

Let us assume, for the sake of simplicity of explanation, that the square of the land 

available for region is limited to unity from geographical reason.3 All regions are 

homogeneous. Since the number of the regions is the control variable of the 

government, there exists a possibility that some lands may not be used for economic 

activities and remain vacant.  For technical reason, we assume that the number of 

available lands are finite.   

Since the size of the land is fixed, the production of each region is given only by the 

number of workers,  

.t tY N=                   (1) 

The people who was born at the beginning of period t  is called the generation t .  

The generation t works at period t and earns the wage income tw , and he faces the 

interest rate 1tr + .  Then the budget constraint is given by  
2

1 1

11
t

t t
t

c
w c

r
+

+

= +
+

.                       (2) 

He maximizes the utility function,  

1 2
1 1 ,t t t t tu c c G G+ += + +      (3) 

subject to the budget constraint (2).  tG  denotes the public good in period t.   We 

assume that the public good is not storable.  Since the individual of the generation t 

determines the consumption of the periods t  and 1t +  so as to maximize the utility 

function (3), we have  

1 ,
2
t

t

w
c =           (4) 

( )12
1

1
2

t t
t

w r
c +

+

+
= .         (5) 

Thus the saving of the generation t per capita is given by  

                                                  
2 We do not examine the stability of the equilibrium, where population are equally 
distributed. 
3 Most of the literatures on the Henry George theorem assume that the size of the land 
in each region is determined endogenously, however, in result, the regions are all 
homogeneous since the conditions on those regions are assumed homogeneous.   
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1

2
t

t t t

w
s w c= − = .        (6) 

Assume that there is only one way of storing the wealth, that is to buy the land.  

The saving ts  is spent to buy the land.  We assume that the older people of any 

regions can buy the land of any other regions.  Since the government can determine the 

number of the regions at each period, there should be some regions which happen to be 

unpopulated suddenly.  Then the land owners suffer loss.  In order to avoid 

asymmetry among landowners, we assume that all landowners are homogeneous, and 

people can buy any lands of any other regions.   The important assumption is that it is 

not  known to the people that what regions vanish in the government’s plan.   Thus, 

the expected profit rate from the land is common to all.   Let tP  denote the value of 

the land of one region, then the total land value of this economy is given by t tPn , where 

tn  stands for the number of the regions at period t. .   Since the total population is 

fixed at unity, we have 1/t tn N= .  Then the saving of the total population of this 

country is given by, since it is all invested into the land, 

t
t

t

P
s

N
=  .       (7) 

The total saving of the society is  
2 2
t t

t t t

w w
S N n= = .   The land rent income of the 

generation t at period t+1 is given by 1
1 1

1

t
t t

t

Y
Y N

N
+

+ +
+

∂−
∂

in each region.   They also 

receives the revenue from selling the land to the younger generation, who are willing to 

pay the saving.  Here, we assume that the tax to supply the public good is levied on the 

land rent.  Then the generation 0’s net income of period 1 is given by 

1
1 1 1 1 12

w
N w N N G− + − , where 1G , which was already assumed to be the amount of 

the public good, and we assume here that it also denotes the cost to finance this amount 

of the public goods.  Hence per-capita income is given by 1 1
0

11

1
2
w G

i
NN

= − − .  Then 

the consumption of the old age of the generation 0 is given by 

2 1 1
1

11

1
2
w G

c
NN

= − −       (8) 

 For the generation t, for, 2 1t T≤ ≤ − , the per-capita net income of the old age is  

1
1

1

1

2
2

t
t

t
t

t

N
Gw

i
N

+
+

+

+

−
= + .         (9) 
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 They save 
2
t

t

w
s =  at the end of period t and receives the net income ti  at the end of 

the period t+1, hence the interest rate for the saving 1tr +  is given by  

1 1t
t

t

i
r

s+ = − .                                         (10) 

The interest rate can be negative, but it is greater than 1− , otherwise, people do not 

save.  Since the wage rate is determined by the marginal productivity of labor, it is 

given by  

1
2t

t

w
N

= .                                     (11) 

Then (10) is rewritten as 

2
1 1 1

1
3 8t t t t

t
t

w w w G
r

w
+ + +

+
− −=   .                         (12) 

At the final period T , the total income of the old age of the generation 1T −  is  

2
T

T

T
T

N
G

i
N

−
= ,       (13) 

since the generation T does not succeed the land.  The generation T’s income Tw  is 

all spent for the consumption and we have  
1
T Tc w= .                                                       (14) 

Then the interest rate of the final period Tr is given by  

2
1

1

2 8T T T T
T

T

w w w G
r

w
−

−

− −= ,         (15) 

form (6),(10),(11) and (13).   

Thus, the time sequence of the interest rate { }tr  is determined when that of the 

wage rate { }tw and the public good { }tG  are given.   We assumed that the 

government’s control variables are the wage rate and the population size of each region, 

however, hereafter we treat the wage rate { }tw  and the interest rate { }tr  are the 

control variables for the sake of simplicity. 
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III. Welfare Analysis 
 

We discuss the government behavior to maximize the welfare.  The government 

aims to maximize the sum of the utilities of the generations of finite periods as   

1

T

W uτ
τ =

= .          (16) 

   We solve the finite time horizon problem, because we are interested in the optimal 

solution of the initial and the final periods.   The first generation, who is the old 

generation at period 1, owns the land initially.   His consumption at period 1 is given 

by (8).    We have to redefine the utility function for the generation 0 because he lives 

only for one period and only consumes at the old age.   We define that his utility is 

composed of his consumption 2
1c  and the public good 1G  given by 

21
1 1 1

3 4
2o

w
u G w G= − + ,        (17) 

from (8).  And the utility of the generation t, for 2 1t T≤ ≤ − , is given by  

1
1

1
2

t t
t t t

w r
u G G+

+

+
= + + ,        (18) 

from (3),(4) and (5).  For the final period T , the generation T ’s consumption is given 

by (14), and his utility is assumed to be  

T T Tu w G= + .             (19) 

The government maximizes the sum of the utilities from the generations 1 to T .  

The constraint of the government is the sequence of the interest rate given by (12) and 

(15), which is equivalent to the market equilibrium condition of each period4.  In order 

to solve the problem of the government, we form the Lagrangian,  

                                                  
4 The equations (12) and (15), which shows the interest rate of each period, together 
with the budget constraint of individuals (2) and the optimal condition of the labor 
employment (11), lead us to the market equilibrium condition  

( )1 2
t tt t tY c c n G= + +  for 1 t T≤ ≤ .       (f1) 
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2 1 21
1 1 1 1 2

21
1 1

1
2 1

2
1

1

13 4
2 2

1 3 8
2

2 8 .

T

T T T T
T T T T

T

w rw
L G w G G G

w r w w G w
G G r

w

w w G w
w G r

w

τ τ τ τ τ τ
τ τ τ τ

τ τ

λ

λ

−
+ −

+
= −

−

−

   +
= − + + + +        
  + − −+ + + + −  
   

 − −+ + + − 
 

  (20) 

Let us solve this maximization problem.  Differentiating (20) w.r.t. , ,  and t t t tr G wλ , we 

obtain the first order conditions, 

1 0,                                       for 2
4 1

t
t

t t

wL
t T

r r
λ −∂ = + = ≤ ≤

∂ +
      (21) 

2
1

2 1
1 1 1

2

1

2 1 0,               for    1,                         (22 1)         
3 4
2

81 0,                                for   2                   (22 2)
t

t
t

tt

w
t

G
w G wL

G
w

t T
wG

λ
−


− + = = −
 −∂ = ∂ 
 + = ≤ ≤ −


    

2
1

1
2

1

1

3 8 0,                   for 2 1                (23 1)

2 8 0,                for                            (23-2)     

t t t t
t

t

t T T T t
T

T

w w G w
r t T

wL

w w G w
r t T

w

λ

−

−

−

−

 − −− = ≤ ≤ − −
∂ = ∂ − − − = =

 

21 1
2 2 2 2

2 2
2 1

1 1 1

2
1 1 1 1

1 2
1

2 1
1

3 4 3 84 0,                       for 1               (24 1)
23 4

2
1 3 16 3 8 0,      for 2,  (24 2)
2

1 3 16
2

t t t t t t t
t t

t t
t

T T T T
T

G w R w G w
t

w
w G w

r w G w w G wL 2 t T
w ww

r w G w

λ

λ λ

λ

− + + +
+

−

− −
−

− −+ + = = −
−

+ − − −∂ − + = ≤ ≤ − −=
∂

+ − −−
2

1
2

2 1

1

2 8 0,   for 1,        (24 3)

1 2 16 0 ,                                                for .            (24 4)
2

T T T
T

T T

T T
T

TT

w G w
t T

w w

G w
t T

ww

λ

λ

−

− −

−










 −+ = = − −

 − ++ = = −


 

From (21), we have 
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1                        for   2 .
4 1

t
t

t

w
t T

r
λ −= − ≤ ≤

+
      (25) 

From (22-1), we derive 1G , and from (22-2) and (25), tG  for 2 t T≤ ≤  as  

( )2
1 1

4

3               for    1,                                                (26 1)
8 1

1                            for   2 .                                        (26 2)
4

t

t

t

t
w w

G
r

t T
w

 = − += 
+ ≤ ≤ −

 

Then from (26-2) and (23-1,2), eliminating tG , we have the difference equations for 

1tw −  for 2 t T≤ ≤ ,  

( )
( )
( )

3

2

1 3

2

3 2 2
                    for  2 1,                             (27 1)

1

2 1
                    for  .                                       (27 2)

1

t t

t t

t

T T

T T

w r
t T

r w
w

w r
t T

r w

−

 − −
≤ ≤ − −

+= 
− −

= − +

.

  

For 1t = , from (24-1),(25),(26-1,2), we obtain the difference equation, which gives 1w  

from 2w  and 2r ,   

( )
( )

23
12 2

1 22 2
2 2 1 1

6 13 2(1 ) 2 1 0 .
1 1

ww r
w r

w r w w

−− + − + + =
+ +

                     (28) 

Then (27-1) and (28) both determine 1w  given 2w  and 2r .  Those two equations have 

to give the same value of 1w .   This implies that the initial value of the difference 

equation system, i.e., either Tw or Tr should be properly determined. For 2 2t T≤ ≤ − , 

from (24-2), (25), (26-2) and (27-2), we have  

( ) ( )
32

1 1
1 3

1 1

1
3 1 1 4 1 .

3 2(1 )
t t

t t t

t t

r w
r r r

w r
+ +

+
+ +

 +
+ + + = +   − + 

        (29) 

For 1t T= − , from (24-3),(26-2) and (27-2), we have a slightly different equation, 

( ) ( )
32

1
1 3

1 1
3 1 1 .

2 1
T T T

T T

T T

r r w
r r

w r
−

−

 + +
+ + + =   − − 

               (30) 

For t T= , from (24-4), (25) and (26-2), we have  
5/ 2 3

1 1 0
2 2
T T

T T

w w
r r+ − + − = .                                (31) 
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Then tr  is given by  

( )

2

1 1 1

1

3

2
1 1

1
3

1 1

2

1 1 1

1

1 1 6
1,

1
                     where     for   2 - 2,    (32-1)3 (1 )

2

1 1 6
1,

                     where   

t t t

t

t t
t

t t

t t t
t

t

r r A

A

r w
A t T

w r

r r B
r

B

+ + +

+

+ +
+

+ +

+ + +

+

 + + + +
−  

 

 
 +

= ≤ ≤ 
 − +
 

 + + + +
= −  

 

( )
32

1 +1
1 3

1 1

25

2

1
     for     1,       (32 2)

(1 )

81 1 1,                                          for     .            (32 3)
16

t t
t

t t

T

T

r w
B t T

w r

w
t T

w

+
+

+ +
















 +
= = − −   − + 


  + + − = −   
 


  

(29),(30) and (31) give (32-1), (32-2) and (32-3) , respectively.  (32-3) is not a difference 

equation, and which shows the relation between Tw  and Tr .  If Tr  is determined, 

then Tw  is determined.  Then at 1t T= − , from (32-2) 1Tr − , and from (27-2), 1Tw −  

are determined.  Similarly, from (32-1) and (27-1), 2Tw −  and 2Tr −  are determined, 

and so forth.  And as shown in the above, (27-1) gives 1w , and (28) also gives 1w , those 

two should be the same value.   

(32-1,2) are the difference equations of the form of ( )1 ,t t tr w r− = Φ  and (27-1,2) are 

those of ( )1 ,t t tw w r− = Ψ . 

 

 

IV   The Property of the Optimal Path 
Firstly, we have to check the transient path, and show that the optimal path does not 

stay on the stationary state.  From (27-1) and (32-1) or (29), we have the stationary 

state of the wage rate and the interest rate as follows: 

  * *1,  0.w r= =           (33) 

If we assume that the optimal path is on the stationary state in 2 2t T≤ ≤ − , then 

1, 0t tw r= =  holds in this interval.  Then from (27-1), we have 1 1.w =   But from (28) 

we cannot derive 1 1.w =  This leads to a contradictory.  Thus we derived the next 
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theorem. 

 

Theorem 1: 

The optimal path does not stay on the stationary state given by (33).    

 

Next, we derive the dynamic behavior of this optimal path.  First, let us see the 

stationary state of 2 2t T≤ ≤ − , which is given from (27-1) and (32-1) or (29).  We can 

easily have the stationary state level of the variables,   * *0 and 1.r w= =   We define 

1t t tw w w −Δ = − , or the increment of tw  from 1tw − .  Similarly, 1t t tr r r −Δ = −  is defined.  

The curve 0wΔ =  is given by  
3

3

2 2
2

w
r

w

−=
+

             (34) 

from (27-1) setting 1t tw w −= .    And that of  0rΔ =  is given by  

( ) ( ) 32

3

1
4 4 1 .

3 2(1 )
r w

r r
w r

 +
+ = +  − + 

         (35) 

from (29).   The graphs of 0wΔ = and 0rΔ =  are shown in Figure 1.   We can check 

the saddle point property of our difference equation system as follows:  Totally 

differentiating (27-1) and (32-1) or (29), we obtain5  

1

1

7 3
7124
7

t t

t t

dw dw

dr dw
−

−

−     =    −     

.             (36) 

The characteristic roots of the matrix of (36) are
11 6 2

7
− ±

, or  －2.783 and －0.359.  

One of the absolute values of those two characteristic roots is less than one, and the 

other is greater than one.   This shows that the stationary state is a saddle point.  In 

Figure 1, we show the phase diagram.   The arrows in the diagram show the direction 

of the movement of the point.  When under a differential equation system, in this case, 

there exists a pair of the stable arms which monotonically converge to the stationary 

state.   However, our system is not a differential equation system but a difference 

equation system.  Then there exists the possibility of overshooting.   The solution 

                                                  
5 (35) is a backward differential equation system.   We can easily derive the forward 

system as 1

1

7 24
713
7

t t

t t

dw dw

dr dw
−

−

−     =    −     

.   The characteristic roots of the matrix are the 

same.  
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path does not necessarily converge monotonically to the stationary state.   We actually 

numerically solved our difference equation system and show the result.    

 

[Figure 1 around here] 

  

We have derived the optimal dynamic path of the wage rate { }tw  and the interest 

rate { }tr .  In the background, the optimal path of the public goods { }tG  is 

determined.  We have to note that there exist some regions which vanish or emerge in 

the process, however for those regions, the optimal path of the public good is on the   

derived path{ }tG as long as those regions exist.  

We calculated the optimal path of for the cases of 5T =  and 12T = .6  The path of 

each case is shown in Table 1 and 2, respectively.   Both cases show that the path 

converges to the stationary state ( * *1,  0w r= = ), and spend most of the time near it as 

the planning period T increases as shown in Table 1 and 2.7  The optimal path 

oscillates around the stationary state.   This is due to the overshooting because our 

system is a difference equation system.   

 

[Table 1 and 2 around here ] 

 

The optimal path of { }tw  is shown in Figure 2.    The path of the interest rate is 

shown in Figure 3.   Those two exhibit the same property that the paths converge to 

the stationary state in the middle of the planning periods.    

 

[Figure 2 and 3 around here] 

 

 

IV-2.  Reconsideration of the Henry George Theorem. 
 

As shown in Theorem 1, the optimal path does not stay on the stationary state.   

Then what about the Henry George theorem?  In the periods 2 2t T≤ ≤ − , the land 

rent minus public goods expenditure is given by  

                                                  
6 We used Maple 11  to calculate the optimal path. 
7 This is so called the “turnpike” property. 
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+ − −− = − = ,       (37) 

from (11) and (26-2).    It is evident from (33) that only at the stationary state (37) 

vanishes and the Henry George theorem holds.  However, if the optimal path is off the 

stationary state, the theorem does not hold.   

 

Theorem 2: 

On the stationary state, the Henry George theorem is valid at each period, but off 

the stationary state, the theorem is not valid. 

 

Fu (2005) examined the Henry George theorem in an ordinary continuous dynamic 

model where public good accumulates, and derived the result that in terms of the 

discounted sum the land rent and public goods expenditure are equal.  In our model, 

however, where there is no accumulation of the public goods, those two are not equal.  

We are apprehensive that if the government were to continue to take the Henry 

George policy then 1Tr = −  holds and possessing the land does not play the role of the 

store of value.   Hence, for the generation t , for 2 1t T≤ ≤ − , the utilities are all zero, 

because they cannot  consume at all in the old age .  This policy is evidently not 

optimal.  In the reality, in our numerical example, the government does not take the 

Henry George policy every period, and Tr  is actually greater than minus one.  Hence, 

there exists an incentive to posses the land for generation 1T − , thus, for all 

generations.   

 

V. Concluding Remarks 
 

We re-examined the Henry George theorem in a dynamic framework of the 

overlapping generations model where public goods cannot be accumulated.  We derived 

that the Henry George theorem does not hold in general.   Only at the stationary state, 

the theorem holds, however, the optimal path does not stay on the stationary state, but 

converges to it and stays most of the periods near it as the planning period T increases.   

In our model, there is no state variable, and any variable can jump to any level.   

Though there exists a possible choice to jump to the stationary state, but we showed 

that this jump is not optimal.  These findings were possible only in a finite horizon 

planning, where the starting point and final point are determined endogenously.     

There exist regions which vanish in the process, or emerge in the process. The land 
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value of the region which vanishes in the process is smaller than the other regions 

which continue to exist.   Then our assumption that all regions are homogeneous is not 

satisfied.   To avoid the complexity, we assumed that all lands are in a basket and 

people buy a portion of this basket, so the all portions of the basket are homogeneous.   

To relax this assumption is the next extension of this model.     
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  Table 1: T=5 

   

t W r 

1 0429 ― 

2 1.121 0.426 

3 0.906 -0236 

4 1.212 0.604 

5 0.657 -0.976 

 E•

 

-1 

w

r  0rΔ =

0wΔ =

Figure 1:  The Direction of the Optimal path  

0 
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Table 2: T=12 

t w r 

1 0.740 ― 

2 1.111 0.413 

3 0.962 -0.118 

4 1.013 0.045 

5 0.995 -0.015 

6 1.000 0.003 

7 1.002 0.005 

8 0.991 -0.020 

9 1.023 0.059 

10 0.935 -0.152 

11 1.197 0.540 

12 0.659 -0.773 

 

 

 

 

*w  

w  

t

Figure 2:   

The path of the wage rate 
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Figure 3:   

The path of the interest rate 
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