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We study mechanism design under auditable fairness mandates that constrain only the

formal rule while allowing off-record private communication between the principal and

agents. We model a two-layer environment: a formal rule that maps agents’ reports to out-

comes and must satisfy the mandate, and private advice in which the principal can provide

type-contingent recommendations. We construct a format-preserving randomized encryp-

tion (FPRE): the principal randomizes over symmetry-constrained rules and pairs each

realization with “password”-like advice. Under FPRE, any Bayesian incentive-compatible

social choice function (SCF) is implementable by symmetric formal rules; if the SCF is

dominant-strategy incentive-compatible (DSIC), the resulting mechanism achieves DSIC.

In contrast, constraints that embed predictable structures—such as strict monotonicity and

continuity—cannot be neutralized. We also present an approximate version: continuity

is compatible with it. Our results highlight a regulatory-scope insight: if auditors can

verify only the format of the rule, format-type fairness does not bind, whereas structure-

revealing mandates (i.e., strict monotonicity and continuity) hinder the “encryption” that

sustains obedience to private advice.
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1. Introduction

In many applications of mechanism design, the designer must comply with auditable fairness

mandates—most prominently, symmetry, yet outcome-optimal social choice rules can be asym-

metric even in symmetric environments (e.g., Kotowski, 2018). Such mandates are typically

legal or procedural requirements that can be verified from the formal description of the rule, but

they place no restrictions on off-record communication. This paper asks a first-order question:

when fairness constraints apply only to the auditable formal rule, which constraints truly bind

implementability of a target social choice function (SCF), and which can be neutralized without

violating the format?

We model a two-layer environment. The formal rule is what can be audited; it maps a profile

of reported types to an outcome and must satisfy a given constraint class (e.g., symmetry,

surjectivity, continuity, monotonicity). In addition, the principal can privately communicate

with each agent before the formal rule is executed. Our baseline assumes that the type space is

standard Borel and has continuum cardinality, and the existence of symmetric worst outcomes.

We construct a format-preserving randomized encryption (FPRE): the principal draws a ran-

dom seed, uses it to select a formal rule within the constrained class, and privately sends type-

contingent advice (“passwords”) that aligns the realized formal rule with the target outcome.

Reports that match the advice implement the target SCF; otherwise, the formal rule returns

a symmetric worst outcome. Since the correct passwords are drawn from a continuum, un-

recommended reports hit a correct password with probability zero, which removes profitable

deviations from advice. We formalize this as an unimprovability property.

This yields a sharp dichotomy. Fairness constraints that restrict only the formal rules are neu-

tralizable: any Bayesian incentive compatible (BIC) SCF can be implemented by formal rules

that themselves satisfy symmetry. Moreover, if the target SCF is (weakly) dominant-strategy

incentive compatible (DSIC), the induced mechanism (which embeds the advice stage) attains

weak dominant-strategy incentive compatibility: truthful type reports and advice-following are

(weakly) dominant.

By contrast, constraints that embed predictable structure in the formal rule—strict mono-

tonicity and continuity—are non-neutralizable. Such constraints enable agents to “guess” the
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correct passwords. Predictability undermines unimprovability by making it possible to prof-

itably deviate toward outcomes that the advised messages avoid. We also show an approximate

result: continuity of the formal rule is compatible with η-unimprovable FPREs, in which the

probability of a strictly improving deviation can be made arbitrarily small.

Our results isolate a regulatory-scope insight. If auditors can only verify the format of the

formal rule, then format-type fairness (e.g., symmetry) does not bind: a designer with private

advice can make a fair-looking rule behave as if it were discriminatory. In contrast, mandates

that force the formal rule to reveal structure (monotonicity/continuity) hinder the “encryption”

that sustains obedience to advice.

2. Related Literature

We build on four strands and depart in key ways.

Symmetric implementation. In auction theory, Deb and Pai (2017) show that discrimi-

nation can arise under symmetric auction rules. Azrieli and Jain (2018) and Korpela (2018)

generalize beyond specific formats: Azrieli and Jain (2018) prove that any BIC SCF can be im-

plemented by a symmetric mechanism in a Bayesian Nash equilibrium, but they also show that

under a dominant-strategy equilibrium, only symmetric SCFs are implementable by symmetric

mechanisms.1 Our departure is to separate the auditable formal rule from private communica-

tion, and to impose symmetry only on the former. Thus, when the target SCF is asymmetric,

private advice must (and in our construction does) break symmetry even though the auditable

formal rule remains symmetric.

Virtual/robust implementation and randomization. Classic and robust implementation

study what is achievable without audit-scope asymmetry (Abreu and Matsushima, 1992a,b,

1994; Tian, 1997; Bergemann and Morris, 2005, 2011; Bergemann, Morris, and Tercieux,

2011). Methodologically, our use of randomness is closest to Abreu and Matsushima (1992b):

1Azrieli and Jain (2018) use a strict version of weak dominance (strict for at least one profile of others’ mes-
sages). Under a weaker notion (never requiring strict inequality), Chen and Knyazev (2023) exhibit asym-
metric rules implementable by symmetric mechanisms; they do not give a general sufficient condition for
dominant-strategy implementation.
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both enlarge implementability via randomization in incomplete information. There are two

differences: (i) Goal/solution concept: we obtain exact, format-preserving implementation un-

der BIC or (weak) DSIC, whereas Abreu and Matsushima (1992b) obtain virtual implemen-

tation under iteratively undominated/rationalizable play. (ii) Institutional scope: our question

is driven by auditability—only the format of the formal rule is regulated (symmetry), private

advice is not. This asymmetry is absent in prior work. In dominant-strategy settings, (vir-

tual) implementation requires the SCF to be DSIC (Tian, 1997); we identify which format-type

constraints remain compatible with exact implementation when private communication is avail-

able.

Continuity. Our treatment differs in both object and consequence from continuous imple-

mentation (Oury and Tercieux, 2012): they impose continuity of the equilibrium-induced out-

come map and derive monotonicity-type necessities for rationalizable implementation, whereas

we impose continuity only on the formal rule and show exact non-neutralizability versus ap-

proximate neutralization within that class.

BCE and communication equilibrium. Our two-layer construction can be read as a Bayes

correlated equilibrium (BCE) or communication equilibrium: the principal plays the role of a

mediator who privately recommends reports, and unimprovability is the BCE obedience con-

straint with actions interpreted as reports to the formal rule (Forges, 1986, 1990; Bergemann

and Morris, 2016a,b, 2019). The novelty here is institutional: auditors verify only the format

(e.g., symmetry) of the formal rule, not the asymmetric private advice. We show that such

format-type fairness is neutralizable (exactly, and even in DS when the SCF is DSIC), while

structure-revealing mandates (strict monotonicity, exact continuity) are not—a dimension not

captured by standard BCE analyses. Further, in the BCE framework, dominant-strategy obe-

dience is not the usual focus. Our DS results strengthen this: advice-following is optimal

regardless of beliefs about others’ recommendations (belief-independent obedience).

Other Literature Our mechanism is institutionally distinct from perfect implementation (e.g.,

Izmalkov, Lepinski, and Micali (2010)) and zero-knowledge mechanism design (Canetti, Fiat,
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and Gonczarowski, 2023). Perfect implementation augments the mechanism with crypto-

graphic commitment/verification so that the designer can exactly implement target outcomes

without relying on trusted mediators or violating the players’ privacy. Zero-knowledge mecha-

nisms design protocols that let a mediator or the mechanism prove incentive properties without

disclosing agents’ private information or the mechanism’s sensitive details. Different from their

focus, our interest is in auditable constraints on the format of the rule.

3. Model

The model features a principal and n agents. Let N = {1, 2, . . . , n} denote the set of agents, and

write i = 0 for the principal. Players derive utility from the profile of types and the implemented

outcome. Let T = T n be the set of type profiles and let p ∈ ∆(T ) be a commonly known

prior over T . We assume that T is a standard Borel space with |T | = |R|. Each ti ∈ T is

privately observed by agent i. Let O be the set of outcomes; write each outcome as an n-tuple

o = (o1, . . . , on). For each i ∈ N∗ B {0} ∪ N, let ui : T × O → R denote player i’s utility

function.

Assumption 1 (Worst and symmetric punishments). There exist outcomes {oi}i∈N and o∗ ∈ O

such that:

(i) (Individual worst) For each i ∈ N, t ∈ T , and o ∈ O , ui(t, o) > ui(t, oi), and oi
j = oi

k for

any j, k , i.

(ii) (Multi-deviation fallback) o∗ is symmetric, i.e., o∗i = o∗j for all i, j, and for every i , j and

every t ∈ T , ui(t, o j) > ui(t, o∗).

Example 1. Consider an assignment problem without transfers with monotone preferences. Let

n = 3 and O = {(x1, x2, x3) ∈ R3
+ | x1 + x2 + x3 = 1}. Then, for instance, o2 = (1/2, 0, 1/2) and

o∗ = (1/3, 1/3, 1/3) satisfy Assumption 1.

We refer to a rule or social choice function (SCF) as a mapping µ : T → O . The set of all

rules is R = OT . Typically, we use µ as a target rule: the principal’s objective is to implement

µ by a mechanism.
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A subset C ⊆ R is referred to as a constraint class. We use the following (format) con-

straints.

Definition 1 (Format constraints). Symmetry Rule ν ∈ R is symmetric if for any permuta-

tion π : N → N, whenever ν(t1, . . . , tn) = (o1, . . . , on) we also have ν(tπ(1), . . . , tπ(n)) =

(oπ(1), . . . , oπ(n)).

Surjectivity ν ∈ R is surjective if for every o ∈ O there exists t ∈ T with ν(t) = o.

Strict monotonicity Suppose T is linearly ordered by > and O is partially ordered by �. Rule

ν ∈ R is strictly monotone if for any ti, t′i ∈ T and t−i ∈ T n−1 with ti > t′i , it holds that

ν(ti, t−i) � ν(t′i , t−i).

Continuity Suppose (T, dT ) and (O , dO) are metric spaces. Rule ν ∈ R is continuous if it is

continuous (with the product topology on T n).

We say that a constraint class C satisfies properties A and B (e.g., symmetry and continuity)

if C = {ν ∈ R | ν satisfies A and B}.

The principal uses a private communication and a formal rule ν∗ ∈ C to implement a target

rule µ. In detail, the game proceeds in four stages:

1. The principal chooses M ⊆ C and draws ν∗ ∈ M according to a countably additive

probability measure P on (a Borel σ-algebra of) M. Drawn ν∗ is hidden from the agents.

2. Each agent i observes ti ∈ T and reports t′i ∈ T to the principal.

3. Observing ν∗ and t′, the principal privately sends a recommendation τν
∗

i (t′) ∈ T to each

agent i.

4. Each agent i reports τ′i ∈ T to the formal mechanism, and the outcome ν∗(τ′) is imple-

mented.

We say that a constraint class C is neutralizable if any target rule µ ∈ R (possibly µ < C )

can be implemented by selecting formal rules ν∗ ∈ M ⊆ C together with associated recommen-

dation policies τν
∗

: T → T . The formal definition appears in section 5.
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4. Format-Preserving Randomized Encryption

We now formalize the randomization-with-advice device used in our implementation results.

Fix a constraint class C . For each rule ν̃ ∈ R, a map τ̃ν̃ : O → T is an (outcome-based)

recommendation function for ν̃ if ν̃
(
τ̃ν̃(o)
)
= o for every o ∈ ν̃(T ). Given the recommendation

functions, the messages received, and a probability measure P over M, agents form beliefs

about the chosen mechanism ν∗ ∈ M. We refer to a tuple consisting of a set of rules M, a

probability measure P on M, and recommendation functions {τ̃ν̃}ν̃∈M as a format-preserving

randomized encryption (FPRE) for C if M ⊆ C . An FPRE is unimprovable if, conditional

on the agent’s received recommendation and the recommendation function, the probability that

any unrecommended message yields a strictly better outcome is zero. The formal definition is

as follows.

Definition 2 (Unimprovability). A FPRE (P,M, {τ̃ν̃}) is unimprovable if for any agent i ∈ N,

t ∈ T , o ∈ O , τi ∈ T , τ′i , τi, and τ−i ∈ T n−1, if

Pr
ν̃∼P

[
τi = τ̃

ν̃
i (o)
]
> 0,

we have

Pr
ν̃∼P

[
ui(t, ν̃(τ′i , τ−i)) > ui(t, ν̃(τi, τ−i))

∣∣∣ τi = τ̃
ν̃
i (o)
]
= 0.

We show that the existence of an unimprovable FPRE for symmetric C .

Lemma 1. If C , ∅ satisfies symmetry and surjectivity, there exists an unimprovable FPRE

for C .

Let us briefly explain how to construct the FPRE. Fix a surjective and symmetric rule ν ∈ C .

For a target outcome o ∈ O , pick τ∗ ∈ T with ν(τ∗) = o. Since |T | = |R| = |R2|, there exist

Borel bijections g : (0, 1) → T and h : T → (0, 1)2. For each s ∈ (0, 1), draw an independent

“password” εs following the uniform distribution on (0, 1), and let ε = (εs)s∈(0,1).

Given ε, define the formal rule νε as follows. For any report profile τ = (τi)i, write h(τi) =

(si, wi). If wi = εsi for all i, implement ν
(
g(s1), . . . , g(sn)

)
; otherwise implement the punishment
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outcome specified in Assumption 1. For the target o, the principal recommends to agent i the

message

τ̃ν
ε

i (o) = h−1(s∗i , εs∗i

)
, where h(τ∗i ) = (s∗i , w

∗
i ).

The password construction is independent of agents’ identities, so each νε is symmetric. More-

over, because passwords are drawn from a continuum, any unrecommended report matches a

correct password with probability zero, which yields unimprovability. A formal proof appears

in the Appendix.

5. Neutralization

5.1. Implementation via FPRE

Building on the FPRE defined above, we now present our implementation results. To state the

conditions for implementation, we first recall standard incentive-compatibility notions.

Definition 3. A rule µ is Bayesian incentive compatible (BIC) if, for all i and ti, t′i ∈ T ,

Et−i∼p(·|ti)
[
ui
(
(ti, t−i), µ(ti, t−i)

)]
> Et−i∼p(·|ti)

[
ui
(
(ti, t−i), µ(t′i , t−i)

)]
.

It is weakly dominant-strategy incentive compatible (DSIC) if the inequality holds pointwise in

t−i (and DSIC if it is strict for some t−i).

We say that a constraint class C is Bayesian (resp. weakly dominant-strategy, dominant-

strategy) neutralizable for µ if there exist M ⊆ C , a probability measure P on M, and recom-

mendation policies {τν : T → T }ν∈M such that truthful reporting to the principal and obedience

to τν implement µ are optimal in the Bayesian (resp. weakly DS, DS) sense. More precisely:

Definition 4. Constraint class C is Bayesian neutralizable for µ ∈ R if there exist (M, P) with

M ⊆ C and τν : T → T for each ν ∈ M such that

(a) For any ν ∈ M, i ∈ N, and ti, t′i ∈ T ,

Et−i∼p(·|ti)
[
ui
(
t, ν(τν(t))

)]
> Et−i∼p(·|ti)

[
ui
(
t, ν(τν(t′i , t−i))

)]
.
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(b) For any i ∈ N, t ∈ T , τ′i ∈ T , and τ−i ∈ T n−1,

Eν∼P, t−i∼p(·|ti)
[
ui
(
t, ν(τνi (t), τ−i)

) ∣∣∣ τi = τ
ν
i (t)
]
> Eν∼P, t−i∼p(·|ti)

[
ui
(
t, ν(τ′i , τ−i)

) ∣∣∣ τi = τ
ν
i (t)
]
.

Constraint class C is weakly dominant-strategy neutralizable for µ ∈ R if the inequalities hold

pointwise in t−i (and dominant-strategy neutralizable if they are strict for some t−i and τ−i).

In our notion of neutralizability, agents are required to play a (weakly) dominant strategy in

the communication stage, conditional on truthful reporting. This dominance requirement differs

from Azrieli and Jain (2018), who impose dominance and symmetry on the entire mechanism,

implying that only symmetric rules are implementable.2

With these notions in hand, we state a sufficient condition for format-preserving implemen-

tation. The next result follows immediately from unimprovability (Definition 2).

Proposition 1. Suppose there exists an unimprovable FPRE for C . Then C is Bayesian (resp.

weakly dominant-strategy, dominant-strategy) neutralizable for any µ that is BIC (resp. weakly

DSIC, DSIC).

5.2. Neutralizable and Non-neutralizable Constraints

We now establish the neutralizability of the symmetry constraint. The next corollary follows

immediately from Lemma 1 and Proposition 1.

Corollary 1. If C satisfies symmetry and surjectivity, then C is Bayesian neutralizable (resp.

dominant-strategy neutralizable) for any BIC (resp. DSIC) rule µ.

By contrast, strict monotonicity and continuity are incompatible with unimprovability. The

intuition is straightforward. If rules are required to be strictly monotone, then once an agent

knows that the recommended report τi induces outcome o ∈ O , any higher report τ′i > τi

induces a different outcome o′ � o with probability one; if the agent prefers o′ to o, unimprov-

ability fails.
2As noted in section 2, Chen and Knyazev (2023) show that under a weaker notion of dominance, some asym-

metric rules can be implemented by symmetric mechanisms. In our terminology, the definition of the dominant
strategy follows Azrieli and Jain (2018), and that of the weak dominant strategy is the same as M-DSE defined
in Chen and Knyazev (2023).
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For continuity, if (τ′i , τ−i) yields an outcome different from ν∗(τ) and not equal to any worst

outcome for some ν∗ ∈ M, then by continuity, a neighborhood of (τ′i , τ−i) is also mapped to non-

worst outcomes. Hence, under any probability measure over M, the conditional probability of

a strict improvement after deviating is positive, contradicting unimprovability. Formally:

Proposition 2. (1) Any FPRE over a strictly monotone constraint class C fails unimprovabil-

ity for some utility profile.

(2) Suppose T is separable and M consists of continuous and nonconstant rules. Then any

FPRE based on M fails unimprovability for some continuous utility profile.

6. Extensions and Limitations

This section discusses the issues not fully captured in the main texts.

Approximate unimprovability We relax unimprovability to allow a (small) probability of a

profitable deviation.

Definition 5. Fix η > 0. An FPRE (P,M, {τ̃ν}ν∈M) is η-unimprovable if, conditional on receiving

the recommended message, the probability that some unrecommended message yields a strictly

better outcome (relative to Definition 2) is strictly less than η.

Even under η-unimprovability, some rules may fail to be implementable.

Example 2. Let n = 2 and O = {(1, 0), (1/2, 1/2), (0, 1)}. Agent 2 prefers o to o′ iff o2 > o′2,

while agent 1 is indifferent across all outcomes. Take worst outcomes o1 = (0, 1), o2 = (1, 0)

and symmetric fallback o∗ = (1/2, 1/2). Consider the (trivially DSIC) rule µ(t) ≡ (1, 0) for

all t ∈ T . Suppose a symmetric formal rule ν∗ implements µ. Then there is τ ∈ T with

ν∗(τ) = (1, 0), and by symmetry ν∗(τ1, τ1) = (1/2, 1/2). Since agent 2 never prefers (1, 0)

to (1/2, 1/2), any deviation that makes τ′2 = τ1 deliver (1/2, 1/2) with a positive probability.

Even when this probability is small enough, µ is not implementable as deviation yields a strict

improvement in expectation.
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A sufficient way to preclude this problem is to ensure a strict gap between on-path outcomes

and each agent’s worst outcome. Let O∗ B µ(T ) denote the image of µ. We say that µ induces

α-strict better outcomes for the agents if there exists α > 0 such that, for every i ∈ N, every

t ∈ T , and every o ∈ O∗,

ui(t, o) > ui
(
t, o i) + α.

If µ satisfies the property, then µ remains neutralizable even when M contains only approxi-

mately unimprovable rules (for sufficiently small η): the potential gain from any deviation that

occasionally hits a non-worst outcome is dominated by the on-path gap α.

This concern is especially salient in assignment and matching problems. With indivisible

objects (no transfers), “receiving nothing” is both an agent’s worst outcome and an outcome

that may arise under any rule when supply is scarce; similarly, in matching, “no match” is

individually rational and may occur on path whenever market sides are unbalanced. In such

environments, the strict gap condition typically fails, and approximate unimprovability alone

will not secure neutralization.

Continuity As noted above, exact unimprovability is incompatible with continuity. Never-

theless, continuous rules can satisfy approximate unimprovability.

Proposition 3. Fix η > 0. Suppose that O is convex, T = R, and the symmetric worst outcomes

are common (i.e., there exists o ∈ O such that oi = o for each i ∈ N). Let O∗ ⊆ O be a

countable set of outcomes. Then there exist a symmetric family M∗ of continuous rules that are

surjective onto O∗ and a collection {τ̃ν}ν∈M∗ such that (M∗, P, {τ̃ν}) is η-unimprovable.

Countable types When the type space is countable, exact unimprovability cannot be achieved.

Indeed, suppose that for some profile τ ∈ T and deviation τ′i ∈ T we have, for every ν ∈ C ,

ν(τ) , ν(τ′i , τ−i) , oi. By countability of T and countable additivity of P over M, there exists τ′i

such that

Pr
ν̃∼P

(
ui
(
t, ν̃(τ′i , τ−i)

)
> ui
(
t, ν̃(τi, τ−i)

) ∣∣∣∣ τi = τ̃
ν̃
i (o)
)
> 0.

In words, an agent can “guess” a password with strictly positive probability.
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By contrast, for any η > 0, one can construct an FPRE that is η-unimprovable. The con-

struction parallels Lemma 1 but draws passwords from a finite grid: instead of sampling from

(0, 1), pick passwords from (0, 1) ∩ {1/m, 2/m, . . . ,m/m} for some large m ∈ N. Since T is

countable, there is a bijection T →
(
(0, 1)∩Q

)
× {1/m, 2/m, . . . ,m/m}, which allows us to en-

code each type together with a password. Taking m sufficiently large makes the probability of a

successful, unrecommended deviation arbitrarily small, yielding an η-unimprovable analogue

of Lemma 1.

Incentive of the principal Absent commitment to the recommendation policy τν : T → T ,

the rule µ should satisfy ex post optimality to ensure truthful recommendations by the principal;

that is, u0(t, µ(t)) > u0(t, o) for each o ∈ O and each t ∈ T . Conversely, if µ is ex post

optimal and incentive compatible, then some ν ∈ C implements µ in a perfect Bayesian (Nash)

equilibrium of the full game.

Coalitional deviations. Beyond individual deviations, coalitions can in principle manipu-

late the formal rule. Because the password test in our FPRE is applied coordinate-wise and the

same password map ε : (0, 1) → (0, 1) is used for every coordinate, a coalition can permute

the recommended pairs and mimic recommendations for others without triggering any punish-

ment. Formally, fix νε ∈ M, let o ∈ O be the target outcome, and let τ = τ̃ν
ε
(o) ∈ T denote the

recommended message profile.

Consider τ′ ∈ {τ1, . . . , τn}
n. Since each coordinate (si, wi) of h(τ′) still satisfies wi = εsi ,

the password test passes at every coordinate and the punishments are not triggered, and the

achievable outcomes is extended from νε(τ) to {νε(τ′) | τ′ ∈ {τ1, . . . , τn}
n}. By the symmetry,

this set includes all permuted outcomes of o; (oπ(1), . . . , oπ(n)) for any permutation π : N → N.

Blocking such coalitional deviation would require additional structure that lies outside our

format-preserving scope.
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A. Proofs

Proof of Lemma 1. Step 1: Construction of a subfamily of symmetric formal rules.

Let ε ∈ Ω = (0, 1)(0,1). Note that as T has the same cardinality as R, |T | = |(0, 1)2|. Therefore,

there exist Borel bijections g : (0, 1) → T and h : T → (0, 1)2. Let ν ∈ C be a symmetric and

surjective rule.

We define νε as follows:

1. For each τi ∈ T , let (τ∗i , wi) = h(τi). Then, νε(τ) = ν(g(τ∗1), . . . , g(τ∗n)) if wi = ετ∗i for each

i ∈ N.

2. If there is i such that wi , ετ∗i and w j = ετ∗j for each j ∈ N \ {i}, νε(τ) = oi.
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3. Otherwise, νε(τ) = o∗.

We can show that each νε is symmetric and surjective. If τ j = τ̃
νε

j (o) for any j ∈ N, the

symmetry follows from the symmetry of ν∗. If
{
j ∈ N | τ j , τ̃

νε

j (o)
}
= {i}, τi , τ j for any other

j ∈ N \ {i}. As oi
j = oi

k for each j, k ∈ N \ {i}, this specification preserves symmetry. If∣∣∣∣{ j ∈ N \ {i} | τ j , τ̃
νε

j (o)
}∣∣∣∣ > 2, the outcome o∗ is symmetric and therefore, νε is symmetric.

Surjectivity of νε follows from that of ν. For each o ∈ O , we can find ν(τ) = o and let

τ′i = h−1(g−1(τi), εg−1(τi)) for each i ∈ N. Then, νε(τ′) = o. Therefore, each νε ∈ C .

Step 2: Construction of the probability space.

Let
(
(0, 1),B, λ

)
denote the unit interval with its Borel σ-algebra and Lebesgue law. Define

F B σ
({
ε ∈ Ω | εx1 ∈ (0, 1), . . . , εx` ∈ (0, 1), ` ∈ N

})
,

where σ(X) denotes the σ-algebra generated by a set X. Let P be the (product) probability mea-

sure on (Ω,F ) such that for every finite set {x1, . . . , x`} ⊆ (0, 1), the random vector (εx1 , . . . , εx`)

is i.i.d. with common law λ (uniform distribution on (0, 1)).3 We write εx(ω) for the coordinate

map at index x ∈ (0, 1).

Let f : Ω → Mν be the bijection ε 7→ νε and endow Mν with the transported σ-algebra

M B {A ⊆ Mν | f −1(A) ∈ F }. Define PMν(A) B P
(
f −1(A)

)
for each A ∈M .

Step 3: Construction of the recommendation functions.

For each o ∈ O such that o = νε(t) = ν(g(t∗1), . . . , g(t∗n)), let τ̃ν
ε

i (o) = h−1(t∗i , εt∗i ) for each i ∈ N.

As ν is surjective, this is well-defined.

Step 4: Proof of the unimprovability.

Now we show that (P,Mν, {τ̃ν
′

}ν′∈Mν) is unimprovable.

For any o ∈ O , by τi = τ̃
νε

i (o), h(τi) = (x, εx) for some x ∈ (0, 1). For any deviation τ′i , τi,

let denote (x′, w′) = h(τ′i). Then, the probability that w′ = εx′ is 0. We have three cases with

respect to the others’ reporting.

3By the Kolmogorov (Daniell-Kolmogorov) extension theorem, the consistent family of finite-dimensional dis-
tributions {λ⊗`}`∈N determines a unique probability measure P on the product measurable space

(
Ω,F

)
.
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Case 1. Suppose that τ j = τ̃
νε

j (o) for any j ∈ N \ {i}. Then, νε(τ′i , τ−i) = oi with probability 1.

Then, any deviation is not profitable.

Case 2. Suppose that
∣∣∣∣{ j ∈ N \ {i} | τ j , τ̃

νε

j (o)
}∣∣∣∣ = 1. Note that if τ j , τ̃

νε

j (o), with probability 1,

w j , ετ∗j , where (τ∗j, w j) = h(τ j). Then, νε(τ′i , τ−i) = o∗ with probability 1, while νε(τi, τ−i) = o j.

Then, any deviation is not profitable.

Case 3. Suppose that
∣∣∣∣{ j ∈ N \ {i} | τ j , τ̃

νε

j (o)
}∣∣∣∣ > 2. Then, any deviation does not change the

result. �

Proof of Proposition 1. Let M = M∗. For any ν ∈ M∗, let τν : T → T that satisfy τν(t) =

τ̃ν(µ(t)), and τi = τ
ν
i (t).

Consider stage 4. Suppose the message sent by the principal to agent i is τ∗i . Then, the agent

i believes that sending τi yields ν(τi, τ−i) when the others’ report is τ−i. By the unimprovability,

agents have no incentive to misreport τi , τ
∗
i . Furthermore, if τ−i = τ

∗
−i, the outcome is µ(t)

when τi = τ
∗
i .

Consider stage 2. Conditioned on the equilibrium strategy of the agents in stage 4, reporting

ti to the principal yields outcome µ(ti, t−i). Then, by the incentive compatibility of µ, truth-

telling is the optimal strategy. �

Proof of Proposition 2. Proof for (1): Consider a PRPE for strictly monotonic C , (M, P, {τ̃ν̃}).

Consider o ∈ O and utility function for an agent i ∈ N such that ui(t, o) > ui(t, o′) if o � o′.

Let ν ∈ M be a strictly monotone rule. Suppose that ν(τ) such that τ′i > τi for some τ

and τ. Then, any deviation τ′i > τi improves the utility with probability 1, and therefore,

unimprovability fails.

Proof for (2): Consider a PRPE for continuous C , (M, P, {τ̃ν̃}).

Suppose that each ν ∈ M is continuous and nonconstant. Consider τ, τ′ ∈ T such that

ν(τ) , ν(τ′) = o′. Then, there is i ∈ N such that ν(τi, τ
′′
−i) = o , o′ = ν(τ′i , τ

′′
−i), where τ′′j = τ j

if j < i and τ′′j = τ
′
j if i > j. Consider the utility function such that ui(t, o) > ui(t, o′) for any

o ∈ O \ {o′}. For each ν ∈ M, let τνi = τi.

By the continuity, there is a δ > 0 such that ui(t, ν(τ̂i, τ
′′
−i)) > ui(t, ν(τ′′)) for any τ̂i ∈ Bδ(τ

µ
i ),

where Bδ is a δ-open ball in T .
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As T is separable, let D = {d1, d2, . . . , } be a countable dense set of T . For each k ∈ N, let

Mk = {ν ∈ M | dk ∈ Bδ(τνi )}. Note that for each ν ∈ M, as Bδ(τνi ) is an open set of T , at least one

dk ∈ Bδ(τνi ). Then, we have that Bk B
⋂
ν∈Mk

Bδ(τνi ) , ∅ and
⋃

k∈N Mk = M.

By the countable additivity of P, P(Mk) > 0 for some k ∈ N. Now, let τ̂i ∈ Bk and this

implies that ui(t, ν(τ̂i, τ
′′
−i)) > ui(t, ν(τ′′)) with probability P(Mk) > 0. This contradicts the

unimprovability. �

Proof of Proposition 3. Let T ∗ = N, which is a countable subset of T . Then, there is a surjec-

tion ν∗ : (T ∗)n → O∗. Let ε ∈ Ω B (1
3 ,

2
3 )N. For each τi ∈ R, let ki = bτic and wi = τi − bτic for

each i ∈ N.

Take real numbers β = (β1, β0) with 1 > β1 > β0 > 0, we define q : (0, 1) × N→ (0, 1) as

q(w, k) =


0 if |w − εk| 6 β0

|w−εk |−β0
β1−β0

if β0 < |w − εk| < β1

1 if |w − εk| > β1,

and

Qε, β(t) = 1 −
n∏

i=1

(1 − q(wi, ki)).

Then, we define νε, β as follows:

νε, β(τ) = Qε, β(τ) · o + [1 − Qε, β(τ)] · ν∗(k1, . . . , kn)

This implies that if
∣∣∣wi − ετ∗i

∣∣∣ > β1, νε(τ) = o. Therefore, as β1 < 1/3, νε, β is continuous. Let

τ̃ν
ε, β

(o) be a recommendation function such that ν∗(k1, . . . , kn) = o and τ̃ν
ε, β

i (o) = ki + εki for

each i ∈ N.

We independently choose εk ∈ (1/3, 2/3) from uniform distribution on (1/3, 2/3) for each

k ∈ N. Let z ∈ (0, 1/3) and ` ∈ N. We also choose β1 from {z/`, 2z/` . . . , z} with the same

probability, and β0 = β1 − 1/`. Let M =
{
νε, β | ε ∈ (1/3, 2/3)N, β1 ∈ {z/`, 2z/` . . . , z}

}
. Let

(M, P) denote such a probability space.
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Next, we check the deviation incentive. Let τi = τ̃
νε, β

i (o), and τ′i , τi. Let ki = btic, wi = ti−ki,

k′i = bt
′
ic, and w′i = t′i − k′i . Consider t′i ∈ R with k′i , ki. Then, the probability that

∣∣∣w′i − εk′i

∣∣∣ < β1

is at most 6z.

Consider t′i ∈ R with ki = k′i . Then, as the agent know εki , we consider the probability that

νε, β(τ′i , τ−i) ∈ {o, νε, β(τ)}, which is the probability that β0 <
∣∣∣w′i − εk′i

∣∣∣ < β1. As β1 is randomly

chosen, the probability is at most 1
`
.

Based on the same discussion, the others’ unrecommended reports change the result from

{νε, β(τ), o} is at most max{6z, 1/`}. Therefore, the probability that νε, β(τ′i , τ−i) ∈ {o, νε, β(t)}

is at least [1 − max{6z, 1/`}]n. In conclusion, by taking z sufficiently small and ` sufficiently

large, the probability of strict improvement can be arbitrarily small. and therefore, (M, P, {τ̃ν})

is η-unimprovable.

Furthermore, if ν∗ is symmetric, νε, β is also symmetric as q is independent of agents’ identi-

ties. �
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