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Abstract

The collapse of asset bubbles leads to a demand-driven recession. When capital uti-
lization is endogenous and capital creation is subject to idiosyncratic risks, aggregate
demand significantly influences output, even with flexible prices. The bursting of bub-
bles causes a sharp decline in consumption and investment demand, forcing firms to
reduce capital utilization. As a result, output and long-run growth contract suddenly
and severely, pushing the economy into a demand recession. Nominal rigidities further
deepen the downturn. Policies that stimulate aggregate demand, such as consumption
and investment subsidies, can help prevent such recessions.
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1 Introduction

Motivation and main results: The collapse of asset bubbles frequently leads to a severe re-
cession. While booms and busts in asset prices influence economic activity in various ways,
many scholars highlight the crucial role of aggregate demand. Aliber and Kindleberger (2015)
provide numerous historical examples where asset bubbles triggered significant increases in
both consumption and investment spending. Figure 1 (a) illustrates a sharp decline in ag-
gregate demand during the 2007-2009 financial crisis. Empirical studies confirm that asset
prices have a positive and significant effect on household consumption (see Cooper and Dy-
nan (2016) for a survey). An increase in stock prices boosts investment demand from firms
(Chirinko and Schaller (2001) and Gilchrist et al. (2005)). Conversely, asset price busts are
often followed by a substantial drop in aggregate demand.

[Figure 1]

As emphasized by Keynes’ effective demand theory, a significant decline in aggregate de-
mand can cause a severe economic contraction, even without changes in production capacity.
A drop in aggregate demand directly reduces firms’ sales, which negatively impacts their
operating rates. During the 2007-2009 financial crisis, capacity utilization across U.S. indus-
tries fell from 80 percent to 67 percent (see Figure 1 (b)).1 Vacancy rates in office buildings
also surged, surpassing 10 percent in nearly all major U.S. cities. In Los Angeles County,
the office vacancy rate rose from below 10 percent in 2007 to 15.6 percent in 2009, with
office rents dropping by 12.3 percent between 2008 and 2009 (USC Lusk Center, 2009). The
decrease in capacity utilization and the increase in vacancy rates reduced aggregate output,
driving the economy into a demand-driven recession.

This study investigates the role of aggregate demand and its interaction with asset bubbles
in a growth model featuring endogenous capital utilization. The focus on aggregate demand
raises several key questions: Does aggregate demand influence output even when productive
capacity remains unchanged or all prices are flexible? Does the collapse of bubbles produce
realistic comovement among consumption, investment, capacity utilization, the rental rate of
capital, and output? Does price rigidity exacerbate the recession? Can demand-stimulating
policies, such as consumption and investment subsidies, mitigate the negative effects of a
bubble collapse?

This study presents four main findings. First, even with flexible prices, aggregate demand
is a key determinant of output under certain conditions. The emergence of asset bubbles
increases the wealth of economic agents, which in turn boosts aggregate consumption and
capital formation. In response to this higher aggregate demand, firms intensify their capital
utilization, which drives up the rental rate of capital. As a result, aggregate output rises,
even if productive capacity (capital stock) remains unchanged.

Second, the collapse of bubbles leads to demand-driven recessions. Such crashes reduce
the wealth of economic agents, resulting in an immediate contraction in both aggregate con-
sumption and investment. Faced with reduced demand, firms cut back on capital utilization,
lowering the rental rate of capital. This causes an immediate decline in production, even

1Authors such as Cooley and Prescott (1995) and King and Rebelo (1999) note that, in the short run,
capacity utilization is far more volatile than capital stock.
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though capital stock remains constant in the short run. This pattern aligns with the U.S.
experience during the 2007–2009 financial crisis (see Figures 1). These contractions occur
simultaneously with the bubble crash, creating a realistic comovement among consumption,
investment, capacity utilization, and output in the short run. The recession persists because
long-run growth is also suppressed.

Third, the zero lower bound (ZLB) on nominal interest rates worsens demand-driven
recessions. Bubble crashes reduce aggregate consumption and investment demand, putting
downward pressure on both output prices and interest rates. With the ZLB in place, neither
can adjust fully, causing price rigidity that amplifies the effects of reduced aggregate demand.
As a result, firms are forced to further reduce capital utilization, leading to significant declines
in both output and long-run growth.2

Finally, consumption and investment subsidies are effective in combating demand-driven
recessions. These policies help alleviate demand shortfalls and have a direct, positive impact
on output. Furthermore, under these policies, economies without bubbles can achieve the
same allocation as economies with bubbles.

Model and mechanism: In our model, all prices are flexible, eliminating the New Keynesian
mechanism. Furthermore, the model excludes borrowing constraints and productivity hetero-
geneity, which are commonly found in recent rational bubble models. This allows us to focus
on the aggregate demand channel rather than financial constraints. Instead, we introduce
two key factors into a textbook growth model. First, we incorporate endogenous capital uti-
lization, following Greenwood et al. (1988). This is motivated by the observation that capital
utilization declines sharply during recessions (see Figure 1 (b)) and is much more volatile
than capital stock (see footnote 1). Firms utilize capital more intensively as their output
prices rise relative to input (capital) prices, generating an upward-sloping supply curve.

Second, based on empirical evidence showing that entrepreneurs face significant unin-
sured idiosyncratic risks (Heaton and Lucas, 2000; Moskowitz and Vissing-Jørgensen, 2002),
we introduce uninsured entrepreneurial risks. Specifically, we assume that risk-averse en-
trepreneurs create new productive assets (capital) that are subject to uninsured risks. These
entrepreneurial risks inhibit the creation of productive assets.3 The shortage of productive
assets drives up their prices and reduces their returns, which in turn stimulates demand for
bubbly assets (see Caballero (2006) and Hori and Im (2023)).

With these two factors, aggregate demand becomes a crucial determinant of output. If
capital utilization is exogenous, the supply curve is vertical, meaning shifts in the demand
curve do not affect output (see Figure 2 (a)). However, endogenous capital utilization results
in an upward-sloping supply curve (see Figure 2 (b) and (c)). In the absence of capital
creation risks, the output price relative to the input (capital) price stabilizes at one (Figure 2
2 (b)). Thus, the production side entirely determines output, thereby pining down aggregate
demand, even with an upward-sloping supply curve. However, when capital creation risks
are present, risk-averse entrepreneurs will create capital only if the output price deviates

2This outcome aligns with the experiences of Japan and the U.S. Following the asset bubble bursts in the
early 1990s, Japan faced historically low interest rates and a prolonged period of low growth. Similarly, after
the 2007–2009 financial crisis, the U.S. struggled with low interest rates and a deep recession.

3Caggese (2012) and Michelacci and Schivardi (2013) demonstrate that uninsured risks disrupt en-
trepreneurial activities, leading to a shortage of productive assets.
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from the capital price. The output price is then determined by the intersection of the supply
and demand curves, meaning shifts in the aggregate demand curve have a direct impact on
output (Figure 2 (c)).

[Figure 2]

An asset bubble crash reduces wealth, leading to a decline in aggregate consumption
and investment, which triggers a demand-driven recession. In contrast, consumption and
investment subsidies stimulate aggregate demand, shifting the demand curve to the right.
This directly boosts output and mitigates the recession driven by reduced demand.

Related literature: Recent macroeconomic models have concentrated on the relationship be-
tween asset prices and economic activity. However, as noted by Caballero and Simsek (2020)
and Gertler and Kiyotaki (2010), the literature has often overlooked the crucial role of ag-
gregate demand.4 In these models, the supply side fully determines aggregate output, a
viewpoint that applies to most rational bubble models. In contrast, our approach empha-
sizes the role of the demand side.

Rational bubble models typically examine the effects of bubbles on productive capacities,
including capital accumulation and aggregate total factor productivity (TFP) (e.g., Tirole
(1985), Weil (1987), Farhi and Tirole (2011), Martin and Ventura (2012), Kunieda and Shi-
bata (2016), Hirano and Yanagawa (2017)). Since capital adjusts slowly, the collapse of
bubbles tends to have a gradual effect on output. However, Figure 1 (c) and (d) demonstrate
that during the 2007–2009 financial crisis, real GDP declined sharply, while capital stock
did not experience a similar downturn. Moreover, in these models, aggregate consumption
and investment move in opposite directions in the short run,5 which contradicts the observed
comovement during recessions (see Figure 1 (a)). In contrast, our model focuses on how
bubbles influence aggregate demand and the utilization of capital. We demonstrate that a
bubble crash leads to an immediate and simultaneous contraction in consumption, invest-
ment, capital utilization, and output, even when capital stock remains unchanged in the
short run.

Recently, several authors have emphasized the role of demand-side factors in economic
booms and busts, often incorporating price rigidities and constrained interest rate policies,
such as the ZLB. For example, Hanson and Phan (2017) and Biswas et al. (2020) introduce
nominal wage rigidities in rational bubble models. Caballero and Simsek (2020) show that a
risk premium shock can trigger a demand recession in a New Keynesian framework.6 Basu and

4We discuss the literature that focuses on aggregate demand later.
5In Martin and Ventura (2012), equation (11) shows that bubbles in period t affect capital and output in

period t+1. They assume heterogeneous productivity among agents. If δ = 1, the right-hand side of equation
(11) corresponds to aggregate investment, showing that a collapse of bubbles increases aggregate investment.
In Hirano and Yanagawa (2017), equation (16) shows that the bursting of asset bubbles increases aggregate
investment (though investment allocation becomes less efficient), while equation (8) shows that aggregate
consumption and investment move in opposite directions. Figure 3 in Kunieda and Shibata (2016) displays
similar results. In Kunieda and Shibata (2016) and Hirano and Yanagawa (2017), the collapse of bubbles
affects long-run growth but has no short-run impact on output.

6Other examples of New Keynesian models with demand shocks causing recessions include noise shocks
(Lorenzoni (2009)) and confidence shocks (Ilut and Schneider (2014)). Caballero and Simsek (2020) also
argue that financial speculation during booms worsens demand recessions.
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Bundick (2017) demonstrate that uncertainty shocks fail to replicate procyclical aggregate
dynamics in flexible price models but succeed when nominal rigidities are introduced. Unlike
these models, our framework shows that bubble crashes can induce demand recessions even
without price rigidities. We do not argue that price rigidities are unimportant; in fact, they
become crucial as ZLB constraints deepen demand recessions.

Di Tella and Hall (2022) recently propose a flexible price model of business cycles without
TFP shocks, where increased idiosyncratic risks depress labor demand, leading to a recession.
In contrast, our model assumes that the level of idiosyncratic risks remains constant over time.
A bubble crash immediately reduces entrepreneurs’ wealth, which lowers consumption and
investment demand, forcing firms to cut capital utilization and production.

The studies mentioned above mainly focus on monetary and macroprudential policies. In
contrast, both Di Tella and Hall (2022) and our study examine fiscal policies. Di Tella and
Hall (2022) argue that, during a recession, lowering labor taxes and raising capital taxes are
optimal policies, indirectly stimulating consumption. In contrast, we propose direct subsidies
to stimulate consumption and investment.

The remainder of this paper is organized as follows. Section 2 introduces our flexible price
AK model. Section 3 derives the equilibrium. Section 4 analyzes the impact of bubbles on
aggregate demand and other macroeconomic indicators. Section 5 examines the dynamics
following a bubble crash and demonstrates how it triggers a demand recession. Section
6 explores how the ZLB exacerbates the recession. Section 7 discusses the effectiveness
of demand-stimulating policies in mitigating the downturn. Section 8 provides concluding
remarks.

2 A Simple Flexible Price Model with AK Technology

Our model builds on the textbook AK framework, with time running continuously from t = 0
to ∞ and all prices are fully flexible. Like Greenwood et al. (1988), we endogenize capital
utilization and introduce investment risks in the creation of productive assets.7 However,
unlike their approach, we incorporate idiosyncratic risks. Specifically, following Hori and Im
(2023), risk-averse entrepreneurs face these risks when creating new capital.

Our model is similar to that of Hori and Im (2023), with the key difference being en-
dogenous capital utilization, which is critical to the aggregate demand channel. We highlight
three points. First, as in Krebs (2003) and Hori and Im (2023), introducing a risk-free bond
with zero net supply (enabling borrowing and lending) does not alter the equilibrium allo-
cation, meaning that credit constraints are not relevant (see online Appendix A.4 of Hori
and Im (2023) ). For simplicity, this study excludes a risk-free bond. Second, if we adopt
a neoclassical production function, our main results still hold (see Appendix M). Finally,
as with standard AK models, capital in our framework can be interpreted broadly. The
model can be extended to a model of expanding variety (see online Appendix B of Hori and
Im (2023)), where the risk of creating new capital encompasses the risks of starting new
businesses, opening branches, and developing new products and technologies. Additional

7Guerron-Quintana et al. (2023) also explore endogenous capital utilization in a bubble model, focusing
on the numerical analysis of recurrent bubbles, rather than the demand channel.
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extensions concerning risks and the functional form of capital creation are noted in footnote
10. These extensions are discussed in greater detail in Hori and Im (2023).

2.1 General Good Sector

A single general good is used for both consumption and as an input in capital production.
The general good is produced competitively using the following production function:

Yt = AζtK
I
t , A > 0, (1)

where Yt represents output, K
I
t denotes the capital input, and ζt ≥ 0 is the capital utilization

rate. Following Greenwood et al. (1988), we assume that higher capital utilization leads to
greater depreciation. The depreciation rate is specified as follows:

δ(ζt) = δ1
ζ
1+1/η
t

1 + 1/η
+ δ2, where δ1 > 0, δ2 ≥ 0 and η > 0. (2)

The general good is taken as the numeraire. The capital price is denoted as vt, and the
rental rate of capital is represented by qt. The profit of the general good producer is given
by:8

ΠY
t = AζtK

I
t − qtK

I
t − δ(ζt)vtK

I
t . (3)

The general good firm chooses ζt to maximize net output (Aζt − δ(ζt)vt)K
I
t , which yields

ζt =

(
A

δ1

1

vt

)η

=

(
AVt
δ1

)η

≡ ζ(Vt). (4)

Vt ≡ 1/vt represents the price of the general good relative to the capital price. A higher
general good price relative to the capital price encourages increased capital utilization.9 As
η increases, the production of the general good becomes more responsive to changes in its
price. For simplicity, the following discussion assumes that:

η = 1.

As shown in (6), η influences the slope of the supply curve of the general good. The value
of η determines how shifts in aggregate demand affect general good production. Appendix L
demonstrates that as long as η remains strictly positive, our main results are unaffected.

Both the general good and factor markets are competitive, so we have:

qt = Aζt − δ(ζt)vt, (5)

8Alternatively, we can assume that the profit of the general good producer is ΠY
t = (A − Qt)K

I
t , with

the entrepreneur receiving qt = Qtζt − δ(ζt)vt units of the general good for each unit of capital. The
entrepreneur maximizes qt = Qtζt − δ(ζt)vt by choosing ζt. This maximization problem leads to Qt = A
and Qt − δ′(ζt)vt = 0, respectively. In this case, (4), (5), and (6) still hold, and our main results remain
unaffected.

9Caballero and Simsek (2020) assume that utilizing capital incurs no costs up to a certain threshold, and
that the output price is fixed. In this framework, capital utilization is independent of the (fixed) output
price. For more details, see B.1.3 in the online appendix of Caballero and Simsek (2020).
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for any ζt ≥ 0. The capital input KI
t equals the capital supply Kt. The supply of the general

good is given by:

Yt = A1+η

(
Vt
δ1

)η

Kt =
A2Vt
δ1

Kt. (6)

Endogenous capital utilization causes the general good supply curve to slope upward with
respect to Vt.

2.2 Entrepreneurs

The setup of entrepreneurs closely follows that of Hori and Im (2023). Thus, we focus on the
key points. For a detailed discussion on the structure and interpretation of the model, refer
to Section 2 of Hori and Im (2023).

Preferences and Asset holdings: Entrepreneurs are infinitely lived and risk-averse. The
expected utility of entrepreneur i ∈ [0, 1] is given by:

Ui,t = Et

∫ ∞

t

(log ci,t) e
−ρ(s−t)ds, (7)

where ci,t is the consumption of entrepreneur i, and Et is the expectation operator conditional
on information available at time t. The subjective discount rate, ρ, satisfies A > ρ > 0.
Entrepreneur i holds ki,t units of productive assets (capital) and bni,t units of bubbly assets.
Free disposability ensures that the price of bubbly assets is nonnegative, pt ≥ 0. The total
assets of entrepreneur i are given by ωi,t = vtki,t + ptb

n
i,t = ai,t + bi,t, where ai,t ≡ vtki,t and

bi,t ≡ ptb
n
i,t. We assume that ωi,0 > 0 for all entrepreneurs.

Entrepreneurs lend their capital to general good firms at the rental rate qt and earn capital
rental income. The rate of return on holding capital is given by:

rtdt ≡ qtdt+ dvt
vt

. (8)

As in Tirole (1985), the bubbly asset is intrinsically useless and has zero fundamental value.
In the bubbleless economy, pt is zero (pt=0). In the bubbly economy, pt is strictly positive
(pt > 0). If bubbles persist, the rate of return on holding bubbly assets is:

ψtdt ≡ dpt
pt
.

As in Weil (1987), bubbles burst stochastically due to a sunspot shock. Given that pt > 0,
pt+dt remains strictly positive with probability 1−μdt, where μ > 0 is a constant. Otherwise,
we have pt+dt = 0. Once bubbles burst, they are never valued in the future.

Capital creation and Budget constraints: Capital creation is irreversible and subject to
idiosyncratic risks, which are uninsurable. If entrepreneur i uses Ii,t(≥ 0) units of the general
good for a period of length dt, dxi,t units of new capital are produced as follows:

dxi,t = φIi,tdt+ σIi,tdWi,t, φ = 1, σ > 0, (9)
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where Wi,t is a standard Brownian motion, and dWi,t represents the idiosyncratic capital
creation risks, which are independently and identically distributed across entrepreneurs. A
large σ indicates that entrepreneurs face significant risks.10 As mentioned earlier, these risks
encompass the risks of establishing new businesses, opening branches, and developing new
products and technologies.

An aggregate market exists in which productive assets are traded.11 Entrepreneurs sell
the capital they produce at the price vt and earn profits of (vt− 1)Ii,tdt+ σvtIi,tdWi,t. In the
bubbly economy, entrepreneur i faces the following budget constraints (see Appendix A):

dωi,t = {[rt(1− si,t) + ψtsi,t]ωi,t − ci,t} dt+ Ii,t[(vt − 1)dt+ σvtdWi,t], (10)

where si,t ≡ bi,t/ωi,t ∈ [0, 1] is the portfolio weight on bubbly assets. In the bubbleless
economy, we have si,t = 0 in (10).12

Utility maximization: At each point in time, entrepreneur i chooses ci,t, si,t, and Ii,t. The
households’ optimization problem must satisfy the following non-negativity constraints: ki,t ≥
0, the short sale constraint bni,t ≥ 0, and the no-Ponzi-game condition limT→∞ ωi,T e

− ∫ T
t rvdv ≥

0. We assume an interior solution for Ii,t ≥ 0, which holds in the equilibrium considered.
Appendix B shows that entrepreneurs’ optimal behavior is summarized by:

ci,t = ρωi,t, (11a)

Ii,t =
vt − 1

(σvt)2
ωi,t, σ > 0, (11b)

si,t = st =

{
1− μ

ψt−rt > 0 in the bubbly economy (pt > 0),

0 in the bubbleless economy (pt = 0),
(11c)

dωi,t =

[
rt(1− st) + ψtst +

(
vt − 1

σvt

)2

− ρ

]
ωi,tdt+

(
vt − 1

σvt

)
ωi,tdWi,t, σ > 0. (11d)

Since Section 2.2 in Hori and Im (2023) provides a detailed discussion of these conditions, we
focus on the key points. Both consumption ci,t and new capital creation Ii,t depend positively
on bubbles (ωi,t = vtki,t + ptb

n
i,t). (11b) shows that new capital is produced (Ii,t > 0) if and

only if the capital price is greater than the capital production cost (vt > 1). Without
uninsured risk (σ = 0), the general good price equals the capital price, Vt(≡ vt

−1) = 1.
Equation (11c) determines entrepreneurs portfolio choice between ai,t and bi,t. (11d) shows
that ωi,t follows a generalized geometric Brownian motion, and ωi,t > 0 holds because of

10Hori and Im (2023) explore several extensions of (9), such as investment adjustment costs, heterogeneity
in φ and σ, and aggregate risks in capital creation.

11The introduction of a risk-free bond in zero net supply does not change the equilibrium, as shown in
Krebs (2003) and Hori and Im (2023). Thus, credit constraints are not relevant. See Proposition A1 of
Section A.4 in the Online Appendix of Hori and Im (2023) for the formal proof.

12As in Hori and Im (2023), we distinguish between income from productive asset creation, Ii,t[(vt−1)dt+
σvtdWi,t], and income from productive asset holdings, rt(1− si,t)ωi,t. The former is subject to idiosyncratic
risk, σdWi,t, while the latter bears no risk. This captures the large risks associated with establishing new
businesses, opening branches, and developing new products and technologies. The introduction of risks
related to asset holdings does not alter the main results. For further details, see online Appendix A.5 of Hori
and Im (2023).
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ωi,0 > 0.13 Thus, the no-Ponzi condition is satisfied. The transversality condition holds as
limt→∞Et [(ωi,t/ci,t)e

−ρt] = limt→∞ ρe−ρt = 0.

2.3 Aggregation and Competitive Equilibrium

The following aggregate variables are defined as: Ct =
∫ 1

0
ci,tdi, It =

∫ 1

0
Ii,tdi, Kt =

∫ 1

0
ki,tdi,

bnt =
∫ 1

0
bni,tdi, and ωt =

∫ 1

0
ωi,tdi. Then, we have:

ωt = vtKt + ptb
n
t , (12a)

Ct = ρωt, (12b)

It =
vt − 1

(σvt)2
ωt, σ > 0. (12c)

In the equilibrium we consider, ζt is constant over time. Thus, the long-run growth rate of
the economy is given by14

gt =
K̇t

Kt

=
It
Kt

− δ(ζt). (13)

The total nominal supply of bubbly assets is constant at M > 0. Thus, we have bnt =M
in bubbly asset markets. Let us define

Bt ≡ ptM

vtKt

. (14)

Bt is a jump variable that represents the asset bubble size. We have Bt = 0 in the bubbleless
economy. Since ptM = stωt holds from bt = stωt and bnt = M , we have st = Bt/(1 + Bt).
Thus, st ∈ (0, 1) holds in the bubbly economy.

Bubbles and Demand: The general good market clears as Yt = Ct + It. Assume that
It > 0. Using (12b), (12c), and (14), we rewrite Yt = Ct + It as

Aζt︸︷︷︸
Yt/Kt

=

(
ρ

Vt
+

1− Vt
σ2

)
(1 +Bt)︸ ︷︷ ︸

(Ct+It)/Kt

, (15)

where ζt = AVt/δ1 is the utilization rate. The left-hand side (LHS) represents the supply
curve of the general good, while the right-hand side (RHS) represents the aggregate demand
curve. Given other factors are constant, asset bubbles have a positive effect on aggregate
demand and thus stimulate capital utilization. In the following two cases, shifts in the demand
curve do not affect general good production. First, when capital utilization is exogenous.
Second, as mentioned earlier, without capital creation risk (σ = 0), we have Vt = 1 (or
vt = 1), so the utilization rate is fixed at ζt = A/δ1. In both cases, the supply side determines
the general good output.

13See Example 4.4.8 on pp.147–148 in Shreve, 2004.
14Because dWi,t has a zero mean and is independently and identically distributed among entrepreneurs,∫ 1

0
(dWi,t)di = 0 holds owing to the law of large numbers (Uhlig (1996)). Since Ii,t and dWi,t are independent,

we aggregate (9) as
∫ 1

0
(dxi,t)di = Itdt + σ

∫ 1

0
Ii,tdi

∫ 1

0
(dWi,t)di = Itdt. Thus, we have dKt ≡ [

∫ 1

0
(dxi,t)di −

δ(ζt)Kt]dt = [It − δ(ζt)Kt]dt.
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Steady States: We consider two types of steady-state equilibria as in the rational bubble
literature. A bubbleless steady-state equilibrium is an equilibrium in which bubbly assets
have no value, Vt, ζt, and gt are constant, and Ct, Kt, and Yt grow at the same rate. A
stochastic bubbly steady-state equilibrium is an equilibrium in which bubbly assets are valued
at a positive price Bt > 0, Vt, ζt, and gt are constant, and Ct, Kt, and Yt grow at the same rate
as long as bubbles exist. After the bubbles collapse, they are never valued. For simplicity, we
refer to these equilibria as the bubbleless steady state and the bubbly steady state, respectively.

Economy without Uninsured Risks (σ = 0): If σ = 0, asset bubbles cannot exist. In
this case, a unique bubbleless equilibrium exists where Vt = 1 ≡ VNR, ζt = A/δ1 ≡ ζNR,
qt = AζNR − δ(ζNR)/VNR = A2/(2δ1) − δ2 ≡ qNR, rt = qNRVNR ≡ rNR(= qNR), and
gt = AζNR − ρ − δ(ζNR) ≡ gNR (< rNR). The inequality A > ρ ensures that It > 0. See
Appendix C. With σ = 0, utilization is fixed at ζt = A/δ1. Hence, the supply side entirely
determines output, even if capital utilization is endogenous.

3 Uninsured Risks and Asset Bubbles

The following proposition provides a set of equations that characterize the equilibrium with
uninsured risks σ > 0.

Proposition 1 Suppose σ > 0. At an equilibrium where It > 0 holds, Vt and Bt satisfy (15)
and

Ḃt =

[
μ(1 + Bt) + AζtVt − 1− Vt

σ2
(1 +Bt)

]
Bt, (16)

where ζt is given by (4).

(Proof) See Appendix D.

With Bt = 0, the general good market equilibrium condition (15) reduces to:

A2V

δ1
=

ρ

V
+

1− V

σ2
, (17)

If (17) has a solution in the interval (0,1), denoted as VL ∈ (0, 1), the bubbleless steady state
exists.

Proposition 2 Suppose that σ > 0. If and only if δ1 > 0 is sufficiently small to satisfy

δ1ρ < A2, (18)

a unique bubbleless steady-state equilibrium exists where It > 0 holds and Vt = VL, Bt = 0,
ζt = ζ(VL) ≡ ζL(< ζNR), qt = AζL − δ(ζL)/VL = A2VL/(2δ1) − δ2/VL ≡ qL(< qNR), rt =
qLVL = (AVL)

2/(2δ1) − δ2 ≡ rL(< rNR), and gt = (1 − VL)/σ
2 − δ(ζL) ≡ gL(< gNR). In the

bubbleless economy, the only equilibrium is the bubbleless steady state.
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(Proof) See Appendix E.

With uninsured risks σ > 0, entrepreneurs produce only a small amount of new productive
assets (capital), leading to reduced growth (gL < gNR). The decreased capital production
raises the capital price vt, which in turn lowers the relative price of the general good (VL <
VNR). As a result, capital utilization declines (ζL < ζNR). The higher capital price vt also
reduces the rate of return on productive assets (rL < rNR). This decrease in the rate of
return triggers speculative demand for bubbly assets, as suggested by Caballero (2006). We
now present the following proposition:

Proposition 3 Let us define

V ∗ ≡ 1− σ(ρ+ μ)
1
2 ∈ (0, VNR) and Z ≡ 1− σ(ρ+ μ)

1
2

1
σ
(ρ+ μ)

1
2 − μ

. (19)

For sufficiently large A, there exist σ1 and σ2 (0 < σ1 < σ2 < (ρ + μ)−
1
2 ) such that for

σ ∈ (σ1, σ2), a unique bubbly steady-state equilibrium exists. In this equilibrium, the followings
hold: Vt = V ∗ ∈ (0, VNR), ζt = ζ(V ∗) ≡ ζ∗(< ζNR), Bt = ZAζ∗ − 1 ≡ B∗(> 0), qt = Aζ∗ −
δ(ζ∗)/V ∗ = A2V ∗/(2δ1)− δ2/V

∗ ≡ q∗(< qNR), rt = q∗V ∗ = (AV ∗)2/(2δ1)− δ2 ≡ r∗(< rNR),
ψt − rt = μ(1 + B∗)(> 0), and gt =

1−V ∗
σ2 (1 + B∗)− δ(ζ∗) ≡ g∗(< gNR).

(Proof) See Appendix F.

Proposition 3 demonstrates that the bubbly steady state exists if (i) technology A is suf-
ficiently advanced and (ii) the degree of entrepreneurial risk lies within a middle range,
specifically σ1 < σ < σ2. The intuition behind this is as follows: uninsured risk (σ > σ1) re-
duces the rate of return on productive assets, which in turn stimulates demand for speculative
bubbles. However, bubbles can only emerge if production risk is not too large (σ < σ2) and
A is sufficiently high, allowing capital to accumulate at a rate that supports the expansion
of asset bubbles.15

Since a sufficiently large A satisfies (18), both the bubbly and bubbleless steady states
can coexist under the same parameter set, as shown by the following corollary.

Corollary 1 Suppose that A is sufficiently large and σ ∈ (σ1, σ2). In this case, two steady-
state equilibria exist: the bubbly steady-state equilibrium and the bubbleless steady-state equi-
librium.

4 Bubbles and Aggregate Demand

We examine how asset bubbles affect aggregate variables. Let the capital price, aggregate
consumption, capital investment, and general good production in the bubbly and bubbleless
steady states be denoted as v∗, C∗

t , I
∗
t , and Y

∗
t for the bubbly state, and vL, CL,t, IL,t, and

15Similar to Hori and Im (2023), the mechanism behind bubble existence in our model differs from those
in existing studies. In models with borrowing constraints (Martin and Ventura (2012), Kunieda and Shibata
(2016), Hirano and Yanagawa (2017)), agents hold bubbles to ease borrowing constraints. Aoki et al. (2014)
and Brunnermeier and Sannikov (2016) focused on agents holding safe bubbles to diversify asset risks. These
mechanisms are not present in our model.
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YL,t for the bubbleless state, respectively. We omit time index t from v∗ and vL since they are
constant in the steady state. In the following discussion, we use the terms capital creation
and aggregate investment interchangeably. We now present the following proposition.

Proposition 4 Suppose that both the bubbly and bubbleless steady-state equilibria exist.
(i) Capital utilization: We have

V ∗ > VL, q∗ > qL, r∗ > rL, and ζ∗ > ζL. (20a)

(ii) Short-run level effects: Suppose that both steady states have the same level of capital stock
at time t, K∗

t = KL,t. We have

C∗
t > CL,t and Y ∗

t > YL,t. (20b)

If ρ > 0 is sufficiently small, we have

I∗t > IL,t. (20c)

(iii) Long-run growth effects: If ρ > 0 is sufficiently small, we have g∗ > gL. In addition, if
δ2 ≥ 0 is sufficiently small, we have

g∗ > gL > 0. (20d)

(Proof) See Appendix G.

The general equilibrium condition for the goods market, Yt = Ct + It, or equivalently,
(15), helps clarify Proposition 4 (see Figure 2 (c)). The LHS of (15) shows that the relative
supply of the general good, Yt/Kt = Aζt, increases with the relative price Vt. A higher Vt
encourages greater capital utilization, ζt ≡ AVt/δ1. On the RHS, relative aggregate demand,
(Ct + It)/Kt, decreases with Vt. The intersection of these two curves (point a) determines
the equilibrium value of VL.

Asset bubbles stimulate macroeconomic activity by increasing aggregate consumption and
investment, which shifts the aggregate demand curve to the right (see point b in Figure 2
(c)). This raises the relative price of the general good, V ∗ > VL, and induces a level effect.
The higher price boosts capital utilization (ζ∗ > ζL), leading to higher production of the
general good and increased capital demand. Consequently, the rental rate of capital rises
(q∗ > qL), and the relative price of capital, vt(≡ V −1

t ), falls, resulting in an increased rate of
return on productive assets (r∗ > rL). Since (20b) and (20c) hold for a given Kt, this level
effect is a short-run phenomenon. Bubbles also promote long-term growth by stimulating
capital production by entrepreneurs (see (11b)) and increasing general good production (see
(20b)).

In our model, prices are flexible. The aggregate demand effect arises from endogenous
capital utilization and entrepreneurial risk. If the capital utilization rate is fixed exogenously,
the supply curve becomes vertical (see Figure 2 (a)). If σ = 0, then Vt = 1 and the capital
utilization rate is fixed at ζt ≡ A/δ1 (see Figure 2 (b)). In both cases, the supply side
determines Yt.

Bubbles and welfare: Denote the utility of entrepreneurs holding ki,t by WL(ki,t) and
W ∗(ki,t) in the bubbleless and bubbly steady states, respectively. Since asset bubbles increase
consumption and growth, we can easily show that bubbles enhance entrepreneurs’ utility.

12



Proposition 5 Suppose that Proposition 4 holds and that ρ > 0 is sufficiently close to zero.
We have W ∗(ki,t) > WL(ki,t).

(Proof) See Appendix H.

5 Dynamics after Bubble Crashes

We define a demand-driven recession as follows:

Definition 1 A demand-driven recession is an immediate and simultaneous contraction of
aggregate consumption, aggregate investment, the capital utilization rate, output, and the
growth rate, induced by a drop in aggregate demand, Ct + It (a drop in the RHS of (15)),
even though the capital stock remains constant.

To show that a bubble crash causes a demand-driven recession, we assume that Proposi-
tion 4 holds and the economy is initially in the bubbly steady state (point b in Figure 2 (c)).
At t1 > 0, the asset bubble collapses unexpectedly due to a sunspot shock. The economy
then instantly jumps to the bubbleless steady state, which is the unique bubbleless equilib-
rium (see Proposition 2), because ζt, Vt, and Bt are jump variables. Aggregate consumption
and investment drop immediately. This demand contraction deactivates some capital (with
ζt dropping from ζ∗ to ζL), lowers the rental rate (from qt1 to qL,t1), and reduces output
(from Yt1 to YL,t1) at time t1, even though the capital stock remains constant (see Figure 3).
Additionally, long-run growth slows down, resulting in a prolonged recession.

[Figure 3]

Our model addresses the limitations of existing rational bubble models, which primarily
focus on supply-side effects and capital accumulation. These models fail to explain the im-
mediate output contraction following a bubble crash, as they rely on the gradual adjustment
of capital stock. As a result, they predict that aggregate consumption and investment tend
to move in opposite directions, which contradicts empirical data. In contrast, our model
highlights the role of demand, showing that a bubble crash can trigger an instant output
contraction, leading to a realistic comovement of aggregate variables. We emphasize that
these results are achieved even without nominal rigidities.

6 Nominal Price Rigidities

A bubble collapse lowers the rate of return on productive assets (r∗ > rL). If rt has a lower
bound, prices may not adjust fully, exacerbating a recession. To explore this possibility, we
introduce a ZLB on the nominal interest rate and modify the model as follows: Denote the
general good price as PY,t. PY,t grows at rate εt, with v

n
t , p

n
t , and q

n
t representing the nominal

prices of productive assets, bubbly assets, and the nominal rental rate of capital, respectively.
We define vt = vnt /PY,t, pt = pnt /PY,t, qt = qnt /PY,t, and Vt = 1/vt = PY,t/v

n
t . Without the

ZLB, the previous results remain unchanged.
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As in Benhabib et al. (2001), we consider a simplified Taylor rule in which the monetary
authorities set the nominal interest rate as a non-decreasing function of inflation, rn(ε):

rn(ε) =

{
R(ε) > 0 if ε > ε̂,
0 if ε ≤ ε̂,

(21)

where R′(ε) > 1, R(ε̂) = 0, and ε̂ is a parameter. For high inflation, the monetary authorities
follow an active monetary policy, R′(ε) > 1.16 Given the real interest rate rt, the inflation
rate εt is endogenously determined by the Fisher equation: rt = rnt (εt) − εt. Under (21),
rt ≥ −ε̂ holds in equilibrium. If rt = −ε̂, the inflation rate is uniquely determined, ε = ε̂. If
rt > −ε̂, the inflation rate is indeterminate. We assume that if rt > −ε̂, the highest inflation
rate satisfying the Fisher equation prevails, meaning εt > ε̂ when rt > −ε̂.

[Figure 4]

Without the ZLB, we have rt = (AVt)
2/(2δ1)− δ2 in both the bubbly and the bubbleless

steady states (see Propositions 2 and 3). Given ε̂ < δ2, the condition rt(≡ (AVt)
2/(2δ1)−δ2) ≥

−ε̂ implies:

Vt ≥
√
2δ1(δ2 − ε̂)

A
≡ V̂ . (22)

If VL > V̂ and V ∗ > V̂ hold, we have rt > −ε̂, and all the results obtained so far remain
unaffected (see Figure 4 (a)), where VL and V ∗ are defined in Section 3. However, if VL ≤ V̂
or V ∗ ≤ V̂ holds, Proposition 2 or 3 no longer holds. Inequality (22) acts as downward
rigidity on the relative price of the general good. If the general good firm sets ζt = AVt/δ1
according to (4), an excess supply of the general good occurs (Figure 4 (b)). As a result, the
utilization rate becomes smaller than ζt = AVt/δ1 and is determined by aggregate demand:

Aζ =

(
ρ

V
+

1− V

σ2

)
(1 + B), ζ < AV/δ1. (23)

Here, we omit the time index t. If ζ < AV/δ1, underutilization occurs. With underutilization,
the ZLB binds, rn = 0 (ε = ε̂). Hence, Vt and ζt must satisfy

(rn ≡)AζV − δ(ζ) + ε̂ = 0. (24)

In an equilibrium with underutilization, (23) and (24) are satisfied. We prove the following
proposition.

Proposition 6 Suppose that without the ZLB, both the bubbly and the bubbleless steady-state
equilibria exist.
(i) If ε̂ > δ2, underutilization does not occur in either the bubbly or the bubbleless steady
states.
(ii) If ε < ε̂ < δ2−ρ/2 and A is sufficiently large, a unique bubbleless steady-state equilibrium
with underutilization exists. Here, ε is defined in Appendix I.
(iii) Even when ε̂ < δ2, if A is sufficiently large, a unique bubbly steady state without under-
utilization exists. The steady state is the same as that in Proposition 3.

16Caballero and Simsek (2020) assume that prices are perfectly rigid, meaning the inflation rate is zero,
instead of assuming a simplified Taylor rule. Even if we adopt their assumption, our result remains unaffected.
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(Proof) See Appendix I.

If the inflation rate is high (ε̂ > δ2), underutilization never occurs (Proposition 6 (i)). It
occurs only if the inflation rate is not large enough.17 If A is large enough, underutilization
does not occur in the bubbly economy, while it is more likely in the bubbleless economy. High
productivity (large A) shifts the supply curve of the general good rightward, reducing VL,
which makes underutilization more likely in the bubbleless economy. In the bubbly economy,
productivity A also affects aggregate demand. Proposition 3 shows that an increase in A
expands bubbles (B∗ = ZA2V ∗/δ1 − 1) and increases aggregate demand. Thus, with a large
A, underutilization does not occur in the bubbly steady state.

Proposition 6 suggests that a bubble crash is likely to induce underutilization if under-
utilization was absent before the crash. Assume the economy is initially at a bubbly steady
state without underutilization, implying a large A (see Proposition 6 (iii)). If the bubble
suddenly collapses, the large A leads to underutilization according to Proposition 6 (ii).

The following proposition examines the impacts of the ZLB. We use the subscript U for
the variables in the bubbleless steady state with underutilization (VU , ζU , CU,t, IU,t, YU,t, and
gU) and omit the time index t from the variables that are constant over time.

Proposition 7 Suppose that a unique bubbleless steady-state equilibrium exists, regardless of
the presence of the ZLB. Further, suppose that if the ZLB is present, underutilization occurs
in the bubbleless steady-state equilibrium. Then, we have:

VU > VL, ζU < ζL,
CU,t
Kt

<
CL,t
Kt

,
IU,t
Kt

<
IL,t
Kt

, and
YU,t
Kt

<
YL,t
Kt

.

In addition, if ρ > 0 is sufficiently small, we have

gU < gL.

(Proof) See Appendix J.

Underutilization exacerbates the demand-driven recession. The ZLB acts as downward rigid-
ity, ensuring that VU > VL. The higher general good price depresses aggregate consumption
and investment, leading to an excess supply of the general good. As a result, capital uti-
lization must decrease, which causes a reduction in general good production. This, in turn,
severely discourages long-run growth.

7 Aggregate Demand Policy

This section considers a policy designed to stimulate aggregate demand Ct and It. The
budget constraint of entrepreneur i is modified as follows:

dωi,t = {(1− τω,t) [rt(1− si,t) + ψtsi,t]ωi,t − (1− τc)ci,t} dt+ Ii,t[(1+ τI)(vt−1)dt+σvtdWi,t],
(25)

where τc ∈ [0, 1) and τI > 0 are the subsidy rates on consumption and capital creation,
respectively. These policy instruments are constant over time. τω,t represents the tax rate

17If ε̂ < ε, the ZLB is never satisfied because rt < −ε̂ holds for any V ∈ (0, 1). Thus, no equilibrium exists.
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on asset income. The subsidies on consumption and capital creation are financed by the
asset income tax: τcCt + τI(vt − 1)It = τω,t [rt(1− st) + ψtst]ωt. The utility maximization of
entrepreneur i yields:

ci,t =
ρ

1− τc
ωi,t, (26a)

Ii,t =
(1 + τI)(vt − 1)

(σvt)2
ωi,t, (26b)

si,t = st =

{
1− μ

(1−τω,t)(ψt−rt) in the bubbly economy (pt > 0),

0 in the bubbleless economy (pt = 0).
(26c)

The subsidies τc and τI have positive effects on consumption and investment, respectively.
The asset income tax τω,t discourages holding bubbly assets.

The general good market equilibrium condition, Yt = Ct + It, is given by:

Aζt =

[
1

(1− τc)

ρ

Vt
+ (1 + τI)

1− Vt
σ2

]
(1 +Bt), (27)

where ζt = AVt/δ1 is the utilization rate. Again, the LHS and RHS of (27) are the supply of
and demand for the general good, respectively. The dynamics of Bt are governed by:

Ḃt =

[
μ

1− τω,t
(1 + Bt) + AζtVt − (1 + τI)

1− Vt
σ2

(1 + Bt)

]
Bt. (28)

We denote the variables in the bubbleless steady-state equilibrium under this policy as V τ
L ,

ζτL, C
τ
L,t, I

τ
t,τ , Y

τ
L,t, r

τ
L,t, and g

τ
L.

Both the consumption and investment subsidies directly affect output. Consider the
bubbleless steady state. With Bt = 0, (27) determines V τ

L . An increase in τc at time t
stimulates aggregate consumption, positively affecting the RHS of (27). As a result, general
good firms increase capital utilization and output at time t. The consumption subsidy has an
immediate and direct impact on output. τI has similar effects. Thus, the demand-stimulating
policy may eliminate underutilization, as the following proposition shows:

Proposition 8 Suppose that when τc = τI = 0, both bubble and bubbleless steady-state
equilibria exist. Further, suppose that no underutilization occurs in the bubbly steady state,
but underutilization occurs in the bubbleless steady state. If τc and τI satisfy

1

1− τc
= 1 + τI = 1 +B∗, (29)

the following statements hold. (Here, B∗ is characterized in Proposition 3.). Then, a unique
bubbleless steady-state equilibrium exists without underutilization. The allocation and prices
in this equilibrium are the same as those in the bubbly steady-state equilibrium when τc =
τI = 0:

V τ
L = V ∗, rτL = r∗, ζτL = ζ∗,

Cτ
L,t

Kt

=
C∗
t

Kt

,
IτL,t
Kt

=
I∗t
Kt

,
Y τ
L,t

Kt

=
Y ∗
t

Kt

, and gτL = g∗,

where V ∗, r∗, ζ∗, C∗
t , I

∗
t , Y

∗
t , and g

∗ are characterized in Proposition 3.
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(Proof) See Appendix K.

The demand-stimulating policy shifts the demand curve to the right, producing effects similar
to those of asset bubbles. As a result, with this policy, the bubbleless economy achieves the
same allocation as the bubbly economy. If no underutilization occurs in the bubbly economy,
underutilization does not occur in the bubbleless economy either.

8 Discussion and Conclusion

We develope a simple model of rational bubbles with an infinitely lived agent, where aggregate
demand plays a key role in determining output. Even with flexible prices, the bursting of
bubbles leads to a demand-driven recession, characterized by a sharp economic contraction
and prolonged stagnation. The mechanisms behind this type of recession differ from those in
New Keynesian models. In our model, endogenous capital utilization and idiosyncratic risks
are critical factors. We find that nominal rigidities, such as interest rate constraints that lead
to underutilized capital, worsen demand recessions. Stimulating aggregate consumption and
investment through policy can help mitigate such recessions.

However, our model has several limitations. First, many credit booms end in economic
crises, and the interaction between bubbles and credit booms may intensify demand reces-
sions. Incorporating credit frictions into our model would be a valuable extension. Second,
recessions often lead to job losses, but since our model excludes labor, it may underestimate
the negative impact of demand recessions on employment. A more comprehensive model
that includes unemployment is needed. Lastly, this study is purely theoretical, and exploring
the quantitative implications of demand recessions triggered by bubble collapses would be
important. Given our focus on aggregate demand, our model offers new insights into these
issues.
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Figure 1

Source: Capacity utilization data are sourced from the Board of Governors of the Federal
Reserve System (G.17 Industrial Production and Capacity Utilization). GDP and population
data come from Penn World Table 9.1 (Feenstra et al. (2015)). Consumption and investment
data are also taken from the National Accounts in Penn World Table 9.1. Capital data are
obtained from rkna series in Penn World Table 9.1. The capital measure is adjusted
for differences in marginal products across various capital types, making it an appropriate
measure of capital input. All data are annual.
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Appendix

A Derivation of the Budget Constraint (10)

Suppose a bubbly economy prevails between time t and t + dt. During this period, en-
trepreneur i earns capital rental income of qtki,tdt and profits given by (vt − 1)Ii,tdt +
σvtIi,tdWi,t. They consume ci,tdt units of the general good and purchase dki,t units of capital
and dbni,t units of bubbly assets. If they sell capital (dki,t) or bubbly assets (dbni,t), these
quantities will be negative. Thus, we have:

ci,tdt+ vtdki,t + ptdb
n
i,t = qtki,tdt+ (vt − 1)Ii,tdt+ σvtIi,tdWi,t. (A.1)

From ωi,t = vtki,t + ptb
n
i,t = ai,t + bi,t, we have dωi,t = (dvt)ki,t + vtdki,t + (dpt)b

n
i,t + ptdb

n
i,t.

Using bi,t = si,tωi,t, ai,t = (1− si,t)ωi,t, ωi,t = ai,t + bi,t, and (A.1), the budget constraint (10)
is derived.

B Bellman Equation and the Optimal Behavior of an Entrepreneur

This appendix follows Appendix B of Hori and Im (2023). In the bubbly economy, let the
value function of entrepreneur i be denoted as U∗(ωi,t, t), where ωi,t represents the wealth of
entrepreneur i. In the bubbleless economy, we set ωi,t = ai,t, so U(ai,t, t) is the value function
for the bubbleless economy. We assume the functional form U(ai,t, t) = D(ln ai,t + ut).
Equation (B.6) in Appendix B of Hori and Im (2023) shows that the Bellman equation in
the bubbleless economy is given by:

ρU(ai,t, t) = max
ci,t,Ii,t

{
log ci,t +D

rtai,t + (vt − 1)Ii,t − ci,t
ai,t

− D

2

(
σvtIi,t
ai,t

)2

+Du̇t

}
, (B.1)

where D is an undetermined coefficient. The first-order conditions are given by:

ci,t :
1

ci,t
=

D

ai,t
, (B.2)

Ii,t :
vt − 1

ai,t
=

(
σvt
ai,t

)2

Ii,t. (B.3)

If we use (B.1), (B.2), and (B.3), we obtain:

ρD log ai,t+ ρDut = log ai,t− logD+D

[
rt +

(
vt − 1

σvt

)2
]
− 1− D

2

(
vt − 1

σvt

)2

+Du̇t. (B.4)

Then, we obtain:

D =
1

ρ
(B.5)

ρut = ρ ln ρ+ rt +

(
vt − 1

σvt

)2

− ρ− 1

2

(
vt − 1

σvt

)2

+ u̇t. (B.6)

1



Then, we have:
ci,t = ρai,t.

The transversality condition is satisfied as limt→∞Et

[
ai,t
ci,t
e−ρt

]
= limt→∞ ρe−ρt = 0.

To consider the Bellman equation in the bubbly economy, we distinguish the capital price
in the bubbly economy, denoted as v∗t from the capital price in the bubbleless economy,
denoted as vt, because the existence of bubbles may influence the capital price. Equation
(B.12) in Appendix B of Hori and Im (2023) shows that the Bellman equation in the bubbly
economy can be written as:

ρU∗(ωi,t, t) = max
ci,t,Ii,t,si,t

{
log ci,t +D∗ [rt(1− si,t) + ψtsi,t]ωi,t + (v∗t − 1)Ii,t − ci,t

ωi,t

− D∗

2

(
σv∗t Ii,t
ωi,t

)2

+D∗u̇∗t

− μ

[
D∗ (logωi,t + u∗t )−D

(
log

vt
v∗t

(1− si,t)ωi,t + ut

)]}
. (B.7)

D∗ is an undetermined coefficient. The third line uses ai,t = vtki,t = vt(ωi,t − bi,t)/v
∗
t =

vt(1− si,t)ωi,t/v
∗
t . The first-order conditions are given by

ci,t :
1

ci,t
=
D∗

ωi,t
(B.8)

Ii,t :
v∗t − 1

ωi,t
=

(
σv∗t
ωi,t

)2

Ii,t (B.9)

si,t : D∗(ψt − rt) = D
μ

1− si,t
. (B.10)

From (B.10), we obtain:

si,t = 1− D

D∗
μ

ψt − rt
= st. (B.11)

Thus, all entrepreneurs hold the same proportion of their wealth as bubbly assets.
Using (B.8), (B.9), (B.10), and (B.11), we rewrite (B.7) as:

ρD∗ logωi,t + ρD∗u∗t = logωi,t − logD∗ +D∗
[
rt(1− st) + ψtst +

(
v∗t − 1

σv∗t

)2
]
− 1 +D∗u̇∗t

− D∗

2

(
v∗t − 1

σv∗t

)2

− μ

[
D∗(lnωi,t + u∗t )−D

(
ln
vt
v∗t

(1− st)ωi,t + ut

)]
.

(B.12)

Then, we obtain:

D∗ =
1

ρ
(= D) (B.13)
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ρu∗t = ρ ln ρ+ rt(1− st) + ψtst +

(
v∗t − 1

σv∗t

)2

− ρ− 1

2

(
v∗t − 1

σv∗t

)2

+ μ

{
ln

[
(1− st)

v∗t
vt

]
− u∗t + ut

}
+ u̇∗t . (B.14)

The behavior of entrepreneur i is summarized by (11a)–(11c), and the transversality con-

dition holds as limt→∞Et

[
ωi,t

ci,t
e−ρt

]
= limt→∞ 1

ρ
e−ρt = 0. For simplicity, we do not distinguish

between v∗t and vt. Substituting (11a)–(11c) into (10) yields (11d). This equation shows that
ωi,t follows a generalized geometric Brownian motion, ensuring that ωi,t > 0 because of the
initial condition ωi,0 > 0 (see Example 4.4.8 on pp. 147–148 in Shreve, 2004).

C Equilibrium without Risks σ = 0

Assume no risks are associated with capital production, that is, σ = 0. From the first-order
condition for Ii,t, either (B.3) or (B.9), we obtain Vt = 1 ≡ VNR. Hence, the capital price
vt remains constant at 1(= φ−1) and v̇t = 0. The capital utilization rate is given by ζt =
A/δ1 ≡ ζNR. The rental rate of capital is qt = AζNR − δ(ζNR)/VNR = A2/(2δ1)− δ2 ≡ qNR.
The rate of return on holding capital is rt = qNRVNR = A2/(2δ1)− δ2 ≡ rNR.

Next, we show that Bt = 0. Using the definition Bt = ptM/(vtKt), Vt = 1 ≡ VNR, and
(12b), the good market clearing condition (15) can be rewritten as:

A = ρ(1 + Bt) +
It
Kt

. (C.1)

Since It ≥ 0, Bt = ptM/(vtKt) ≥ 0 must be bounded above. Suppose that the price of
bubbly assets is positive, pt > 0. Then, we have:

Ḃt =

(
ψt − K̇t

Kt

)
Bt = {ψt − A+ ρ (1 + Bt) + δ(ζNR)}Bt = {ψt − rt + ρ (1 +Bt)}Bt

= (μ+ ρ) (1 + Bt)Bt. (C.2)

The first equality uses vt = 1, v̇t = 0, and ψ ≡ ṗt/pt. The second equality uses (13) and
(C.1). The third equality uses vt = 1, dvt = 0, and rt ≡ q+v̇t

vt
. The last equality uses vt = 1,

at = (1− st)ωt, (11c), and:

μ

ψt − rt
= 1− st =

vtKt

vtKt + ptM
=

1

1 +Bt

. (C.3)

Since Bt ≥ 0 must be bounded, the solution of (C.2) is Bt = 0. Thus, no bubble equilibrium
exists. From Bt = 0 and (C.1), we have It/Kt = A− ρ > 0. From (13) and (C.1), we obtain
gt = AζNR − ρ− δ(ζNR) ≡ gNR (< rNR).

D Proof of Proposition 1

If It > 0, then (12c) holds. In equilibrium, the general good market must clear (Yt = Ct+It).
Thus, (15) must hold. In the bubbly economy Bt > 0, we can derive the dynamics of Bt as

3



follows:

Ḃt

Bt

=
ṗt
pt

− v̇t
vt

− K̇t

Kt

= μ(1 + Bt) + AζtVt − 1− Vt
σ2

(1 +Bt).

In the second equality, we use equations (5), (12c), (13), and (C.3), where rt ≡ q+v̇t
vt

, and

ψt ≡ ṗt/pt. In the bubbleless economy, we have pt = 0, which implies that Bt = Ḃt = 0.
Then, (16) holds in both the bubbly and the bubbleless economies.

E Proof of Proposition 2

In the bubbleless economy (Bt = 0), (17) characterizes the equilibria. The LHS of (17)
increases from 0 to A2/δ1 as V increases from 0 to 1. The RHS of (17) decreases from +∞ to
ρ as V increases from 0 to 1. Under the condition given by (18), (17) has a unique positive
solution, denoted as VL ∈ (0, 1). Thus, we have Vt = VL. Since VL < 1, It > 0. As VL is
constant over time, this represents a steady-state equilibrium. Given the uniqueness of VL,
no other equilibria exist.

As (4) holds, we have:

ζt =
AVL
δ1

= ζ(VL) ≡ ζL. (E.1)

Because of VL < 1 = VNR, we have ζL < ζNR. From (5), we have:

qt = AζL − δ(ζL)/VL =
A2VL
2δ1

− δ2
VL

≡ qL. (E.2)

From rtdt = (qtdt+ dvt)/vt and dvt = 0, we have:

rt = AζLVL − δ(ζL) =
(AVL)

2

2δ1
− δ2 ≡ rL. (E.3)

Both qL and rL increase with V . Since VL < VNR, we have qL < qNR and rL < rNR. Because
the growth rate is given by (13), we have:

gt =
1− VL
σ2

− δ(ζL) ≡ gL. (E.4)

From the definition of gNR, (17), and (E.4), we have:

g =
A2V

δ1
− ρ

V
− (AV )2

2δ1
− δ2, (E.5)

where (g, V ) = (gNR, VNR) or (gL , VL). This equation shows that g increases with V as long
as 0 < V ≤ 1. Since 0 < VL < VNR, we have gL < gNR.
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F Proof of Proposition 3

If we set Ḃt = 0 in (16), we obtain:(
1− Vt
σ2

− μ

)
(1 + Bt) = AζtVt. (F.1)

If we eliminate Bt from (15) and (F.1), we obtain Vt = 1− σ(ρ + μ)
1
2 ≡ V ∗. The inequality

0 < σ < (ρ + μ)−
1
2 ensures that V ∗ ∈ (0, 1). Since V ∗ < 1, we have It > 0. Because (4)

holds, we have:

ζt =
AV ∗

δ1
≡ ζ∗ (< ζNR). (F.2)

As V ∗ < 1 = VNR, we have ζ∗ < ζNR. If we substitute Vt = V ∗ into (F.1), we obtain
Bt = ZAζ∗ − 1 ≡ B∗. If σ = 0, we have Z = 0. In addition, we have:

1

(ρ+ μ)
1
2

<
1

(ρ+ μ)
1
2

ρ+ μ

μ
=

(ρ+ μ)
1
2

μ
. (F.3)

Thus, the inequality 0 < σ < (ρ + μ)−
1
2 ensures that Z > 0. The inequality B∗ > 0 holds if

and only if:

(ρ+ μ)
1
2 − μσ < A2σ

[
1− σ(ρ+ μ)

1
2

]2
. (F.4)

The LHS decreases with σ and is positive for σ ∈ [0, 1/(ρ+ μ)
1
2 ] because of (F.3). The RHS

is equal to zero if σ = 0 or σ = (ρ+ μ)−
1
2 and is positive if σ ∈ (0, (ρ+ μ)−

1
2 ). We have:

∂RHS

∂σ
= A2

[
1− σ(ρ+ μ)

1
2

] [
1− 3σ(ρ+ μ)

1
2

]
. (F.5)

The RHS increases with σ for σ ∈ [0, (ρ + μ)−
1
2/3] and decreases with σ for σ ∈ [(ρ +

μ)−
1
2/3, (ρ + μ)

−1
2 ]. As A increases, the RHS also increases if σ ∈ (0, (ρ + μ)−

1
2 ). Thus, for

sufficiently large A, there exist σ1 and σ2 (0 < σ1 < σ2 < (ρ+ μ)−
1
2 ) such that (F.4) holds if

σ ∈ (σ1, σ2).
From (5), we have:

qt = Aζ∗ − δ(ζ∗)
V ∗ =

A2V ∗

2δ1
− δ2
V ∗ ≡ q∗. (F.6)

From rtdt = (qtdt+ dvt)/vt and dvt = 0, we have

rt = Aζ∗V ∗ − δ(ζ∗) =
(AV ∗)2

2δ1
− δ2 ≡ r∗ (< rNR). (F.7)

Since V ∗ < 1 = VNR, we have r∗ < rNR.
From (11c) and st = Bt/(1+Bt), we have ψt−rt = μ(1+B∗) (> 0). Because the growth

rate is given by (13), we have:

gt =
1− V ∗

σ2
(1 +B∗)− δ(ζ∗) ≡ g∗. (F.8)

From (E.5) and 0 < V ∗ < VNR, we have g∗ < gNR.
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G Proof of Proposition 4

Proof of (i): From (4) and (15), we have:

A2

δ1
=

(
ρ

V 2
+

1− V

σ2V

)
(1 +B), (G.1)

where (V,B) = (V ∗, B∗) or (VL, BL). Since B
∗ > 0, the above equation implies:

ρ

V ∗2 +
1− V ∗

σ2V ∗ <
ρ

VL
2 +

1− VL
σ2VL

.

The LHS decreases with V ∗. Thus, we have V ∗ > VL. From (E.2) and (F.6), we have q∗ > qL.
From (E.3) and (F.7), we have r∗ > rL. From (E.1) and (F.2), we have ζ∗ > ζL.

Proof of (ii): Since Yt = AζtKt and ζ
∗ > ζL, we have Y ∗

t > YL,t if both steady states have
the same level of Kt.

We rearrange (G.1) as:

1 + B

V
=

A2/δ1
ρ
V
+ 1−V

σ2

, (G.2)

where (V,B) = (V ∗, B∗) or (VL, 0). Thus, we have:

Ct = ρωt = ρ
1 +B

V
Kt = ρ

A2/δ1
ρ
V
+ 1−V

σ2

Kt. (G.3)

The last term increases with V . Thus, we have C∗
t > CL,t if both steady states have the same

level of capital stock.
(20c) is proven as follows. From Yt = Ct + It, Yt = AζtKt, (4), and (G.3), we have:

It =
A2

δ1
V

(1− V )V

ρσ2 + (1− V )V
Kt. (G.4)

Note that VL is a positive solution of (17) that can be rewritten as:

Λ(V ) ≡ (σ2A2 + δ1)V
2 − δ1V − ρδ1σ

2 = 0.

Thus, we have:

VL =
δ1 +

√
δ1

2 + 4ρδ1σ2(σ2A2 + δ1)

2(σ2A2 + δ1)
→ δ1

σ2A2 + δ1
(≡ VL,ρ→0) , (G.5)

as ρ→ 0. Further, we have:

V ∗ = 1− σ
√
ρ+ μ→ 1− σ

√
μ
(≡ V ∗

ρ→0

)
, as ρ→ 0. (G.6)

Thus, both VL and V ∗ converge to a constant as ρ→ 0. From (G.4), we have:

It → A2

δ1
Vρ→0Kt, where Vρ→0 = V ∗

ρ→0 or VL,ρ→0.
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Since V ∗ > VL, (20c) holds if ρ > 0 is sufficiently small.

Proof of (iii): If we use (2), (4), and (G.4), the growth rate is written as:

g =
It
Kt

− (AV )2

2δ1
− δ2 =

A2

δ1

(
X(V )V − V 2

2

)
− δ2, where X(V ) ≡ (1− V )V

ρσ2 + (1− V )V
.

(G.7)

Above, we have (V, g) = (VL, gL) or (V
∗, g∗). We differential the above equation with respect

to V :

∂g

∂V
=
A2

δ1
(X(V ) +X ′(V )V − V ) , where X ′(V ) =

ρσ2(1− 2V )

ρσ2 + (1− V )V
. (G.8)

Since both VL and V ∗ converge to a constant as ρ→ 0, we have:

∂g

∂V
→ A2

δ1
(1− Vρ→0) > 0 for Vρ→0 < 1. (G.9)

where Vρ→0 = VL,ρ→0 or V ∗
ρ→0. Thus, since 0 < VL < V ∗ < 1, we have g∗ > gL for sufficiently

small ρ > 0.
Using (G.7), we can show that g∗ + δ2 > 0 and gL + δ2 > 0 as follows:

g + δ2 =
A2

δ1
V

(
X(V )− V

2

)

>
A2

δ1
V (X(V )− V ) =

A2

δ1
V 2 (1− V )2 − σ2ρ

ρσ2 + (1− V )V

> 0, (G.10)

where (V, g) = (VL, gL) or (V ∗, g∗). The last inequality holds because 0 < VL < V ∗ =
1− σ(ρ+ μ)1/2 < 1. (G.10) shows that if δ2 ≥ 0 is sufficiently small, we have gL > 0.

H Proof of Proposition 5

We first derive WL(ki,t). We have ωt = Kt/Vt + ptM = (1 +Bt)Kt/Vt. Since both Vt and Bt

are constant in the steady state, we have:

gt =
K̇t

Kt

=
ω̇t
ωt

= rt(1− st) + ψtst +

(
1− Vt
σ

)2

− ρ. (H.1)

To obtain the last equality, we aggregate (11d) over i, using the facts that ωi,t and dWi,t are
independent, and that dWi,t follows a normal distribution with zero mean.

Since gL = (1− VL)/σ
2 − δ(ζL) holds in the bubbleless economy, we have:

1− VL
σ

= σ (gL + δ(ζL)) . (H.2)

From st = 0, (B.5), (B.6), (H.2) and U(ai,t, t) = D(log ai,t + ut), we have:

ρU(ai,t, t) = log ai,t + log ρ+
1

ρ

[
rL +

(
1− VL
σ

)2

− ρ

]
− 1

2ρ
{σ (gL + δ(ζL))}2 . (H.3)
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At the steady state, we have u̇t = 0. Thus, from (H.1) and (H.3), we obtain:

ρU(ai,t, t) = log ρai,t +
1

ρ

[
gL − 1

2
{σ (gL + δ(ζL))}2

]
. (H.4)

Since ρai,t = ρvLki,t = (CL,t/Kt)ki,t in the bubbleless steady state, (H.4) is rewritten as:

ρWL(ki,t) = log
CL,t
Kt

ki,t +
gL
ρ

− 1

2ρ
σ2(gL + δ(ζL))

2. (H.5)

The term −σ2

2ρ
(gL + δ(ζL))

2 captures the utility loss from investment risks.

Next, we derive W ∗(ki,t). Since g∗ = (1 − V ∗)(1 + B∗)/σ2 − δ(ζ∗) holds in the bubbly
steady state, we have:

1− V ∗

σ
=
σ (g∗ + δ(ζ∗))

1 +B∗ . (H.6)

At the steady state, we have u̇∗t = 0. Thus, from (B.13), (B.14), (H.6) and U∗(ωi,t, t) =
D∗(logωi,t + u∗t ), we have:

ρU∗(ωi,t, t) = logωi,t + log ρ+
1

ρ

[
r∗(1− s∗) + ψs∗ +

(
1− V ∗

σ

)2

− ρ

]

− 1

2ρ

{
σ (g∗ + δ(ζ∗))

1 + B∗

}2

− μ [U∗(ωi,t, t)− U(ai,t, t)] . (H.7)

From (H.1) and (H.7), we obtain:

ρU∗(ωi,t, t) = log ρωi,t +
1

ρ

[
g∗ − 1

2

{
σ (g∗ + δ(ζ∗))

1 +B∗

}2
]
− μ [U∗(ωi,t, t)− U(ai,t, t)] . (H.8)

In the bubbly steady state, we have:

ρωi,t = ρωt
ωi,t
ωt

= C∗
t

v∗ki,t
v∗Kt

=
C∗
t

Kt

ki,t. (H.9)

The second equality uses ai,t = v∗ki,t = (1 − s∗)ωi,t, Kt =
∫ 1

0
ki,tdi and ωt =

∫ 1

0
ωi,tdi. From

(H.8) and (H.9), we obtain:

ρW ∗(ki,t) = log
C∗
t

Kt

ki,t +
g∗

ρ
− 1

2ρ

{
σ (g∗ + δ(ζ∗))

1 + B∗

}2

− μ [W ∗(ki,t)−WL(ki,t)] . (H.10)

The last term represents the utility loss owing to a bubble crash. The term −σ2

2ρ

(
g∗+δ(ζ∗)
1+B∗

)2

captures the utility loss from investment risks.
We now prove Proposition 5. From (H.5) and (H.10), we obtain:

(ρ+ μ) [W ∗(ki,t)−WL(ki,t)] = log
C∗
t

CL,t
+
g∗ − gL

ρ
+
σ2

2ρ

[
(gL + δ(ζL))

2 −
(
g∗ + δ(ζ∗)
1 + B∗

)2
]
.

(H.11)
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From Proposition 4, the first and second terms in (H.11) are positive. From (H.2) and (H.6),
we have:

sign

{
(gL + δ(ζL))

2 −
(
g∗ + δ(ζ∗)
1 +B∗

)2
}

= sign
{
(1− VL)

2 − (1− V ∗)2
}
.

Since 0 < VL < V ∗ < 1 holds, we have (1− VL)
2 > (1− V ∗)2.

I Proof of Proposition 6

Proof of (i): If ε̂ > δ2, we have rt ≥ −δ2 > −ε̂. Thus, underutilization never occurs.

Proof of (ii): Consider a bubbleless economy (Bt = 0). We denote the general good price in
the bubbleless steady state with underutilization as VU .

We first show that VU > VL, where VL is defined in Proposition 2. In an equilibrium
with underutilization, the utilization rate is determined by (23). In this case, the condition
ζ < AVU/δ1 must hold. Thus, VU satisfies:

A2

δ1
VU >

ρ

VU
+

1− VU
σ2

.

Since VL is a unique positive solution of A2V/δ1 = ρ/V + (1 − V )/σ2, the above equation
indicates that:

VU > VL. (I.1)

We substitute (23) into (24) to eliminate ζ. Then, we have:

(1− V )V

σ2
=

δ1
2A2

(
ρ

V
+

1− V

σ2

)2

+ δ2 − ε̂− ρ. (I.2)

The LHS is a concave function of V , as shown in Figure A1, while the RHS is a decreasing
and convex function of V . The equation determines VU . If both sides of (I.2) intersect at just
one point, this intersection gives VU (see Figure A1 (a)). If the equation has two intersections,
the left intersection is the equilibrium, which determines VU , while the right one (point A)
is not an equilibrium (see Figure A1 (b)). Suppose point A is an equilibrium. Since point A
is a solution to (I.2), underutilization occurs if the general good firm chooses ζt according to
(4). In this case, downward pressure is exerted on V . If V decreases slightly from VA, the
LHS of (I.2) becomes larger than the RHS, meaning that r > −ε̂ holds and the ZLB is not
binding. Thus, V can fall below VA, and point A is not an equilibrium.

Without intersections, as shown in Figure A1 (c), the LHS < the RHS for all V ∈ (0, 1).
This condition implies r < ε̂, meaning r ≥ −ε̂ is never satisfied. Thus, no equilibria exist.
As ε̂ increases, the RHS shifts downward, leading to the conclusion that for sufficiently small
ε̂, no equilibria exist.

Next, we derive the conditions under which both sides of (I.2) have a unique intersection.
We begin by deriving the conditions under which LHS|V=VL < RHS|V=VL holds. Since VL is
the unique positive solution to the equation A2V/δ1 = ρ/V + (1− V )/σ2, we have:

LHS|V=VL =
A2V 2

L

δ1
− ρ and RHS|V=VL =

A2V 2
L

2δ1
+ δ2 − ε̂− ρ.

9



V0
1

LHS
RHS

VL

(a) One Intersection

V0
1

LHS

RHS

VL

(c) No Intersections

VU V0
1

LHS

RHS

VL

(b) Two Intersections

VU

A

VAV̂

Figure A1 Existence of the Bubbleless Steady State with the ZLB

Thus, inequality LHS|V=VL < RHS|V=VL is equivalent to (AVL)
2/(2δ1)− δ2 + ε̂ = rL + ε̂ < 0.

This inequality holds if and only if VL < V̂ (see (22)), or equivalently:

A2V̂

δ1
>

ρ

V̂
+

1− V̂

σ2
. (I.3)

(Recall that VL is a unique positive solution of A2V/δ1 = ρ/V + (1− V )/σ2.) We substitute
the definition of V̂ in (22) into the above equation. After some manipulation, we obtain:

[2(δ2 − ε̂)− ρ]σ2 · A2 −
√
2δ1(δ2 − ε̂) · A+ 2δ1(δ2 − ε̂) > 0.

Given that 2(δ2 − ε̂)− ρ > 0 (or ε̂ < δ2 − ρ/2), the above inequality holds if A is sufficiently
large.

We next evaluate both sides of (I.2) at V = 1:

LHS|V=1 = 0 and RHS|V=1 =
δ1ρ

2

2A2
+ δ2 − ε̂− ρ.

Thus, we have LHS|V=1 = 0 > RHS|V=1 if and only if:

δ2 − ρ+
δ1ρ

2

2A2
< ε̂.

10



From (18), we know that the inequality δ2 − ρ + δ1ρ2

2A2 < δ2 − ρ/2 holds. Thus, we can

conclude that if δ2 − ρ + δ1ρ2

2A2 < ε̂ < δ2 − ρ/2 and A is sufficiently large, both sides of (I.2)
will have a unique intersection, as shown in Figure A1 (a). In this case, a unique bubbleless
steady state with underutilization exists.

If ε̂ decreases slightly below δ2−ρ+ δ1ρ2

2A2 , two intersections occur, with the left intersection
providing a unique equilibrium, as shown in Figure A1 (b). If ε̂ decreases further, the
intersection disappears, resulting in no equilibrium, as shown in Figure A1 (c). Thus, a lower

bound ε(< δ2 − ρ + δ1ρ2

2A2 ) exists. If ε < ε̂ < δ2 − ρ/2 and A is sufficiently large, a unique
bubbleless steady state with underutilization emerges.

Proof of (iii): On one hand, V ∗ = 1− σ
√
ρ+ μ is independent of A. On the other hand, V̂ ,

as defined in (22), decreases with A. We have the limits limA→0 V̂ = +∞ and limA→∞ V̂ = 0.
Thus, for sufficiently large A, we have V ∗ > V̂ , implying that the ZLB becomes irrelevant.

J Proof of Proposition 7

When B = 0, both Ct/Kt and It/Kt are decreasing functions of V . Since VU > VL holds
(see (I.1)), we have CU/Kt < CL/Kt and IU/Kt < IL/Kt. From Yt = Ct + It, we have
YU/Kt < YL/Kt. Because Yt = AζtKt, we have ζU < ζL.

The growth rate of the bubbleless economy is given by g = (1−V )/σ2−δ(ζ). Irrespective
of the presence of the ZLB, V and ζ satisfy Aζ = ρ

V
+ 1−V

σ2 , which implies:

1− V

σ2
=

Aζ
ρ
V
+ 1−V

σ2

1− V

σ2
=

AζV (1− V )

ρσ2 + V (1− V )
,

where (ζ, V ) = (ζL, VL) or (ζU , VU). Thus, we have:

g = Aζ
V (1− V )

ρσ2 + V (1− V )
− δ(ζ). (J.1)

We know that as ρ → 0, VL converges to VL,ρ→0 (see Appendix G). From (4), ζL converges
to ζL,ρ→0 ≡ AVL,ρ→0/δ1. Since VU is the smaller solution of (I.2), VU also converges to a

constant, which we denote as VU,ρ→0. Further, ζU converges to ζU,ρ→0 ≡ 1−VU,ρ→0

σ2A
. Thus, we

have g → Aζρ→0 − δ(ζρ→0), as ρ→ 0, where ζρ→0 = ζL,ρ→0 or ζU,ρ→0. We have:

∂

∂ζρ→0

(Aζρ→0 − δ(ζρ→0)) = A− δ1ζρ→0 > 0, if ζρ→0 < A/δ1.

Since ζU < ζL ≡ AVL/δ1 < A/δ1, we have gU < gL if ρ > 0 is sufficiently small.

K Proof of Proposition 8

If we substitute Bt = 0, (29) and Vt = V τ
L into (27), we obtain:

A2V τ
L

δ1
=

[
ρ

V τ
L

+
1− V τ

L

σ2

]
(1 + B∗), (K.1)

11



where B∗ is defined in Proposition 3, this equation determines V τ
L . The comparison between

(K.1) and (15) reveals that V τ
L = V ∗. From V τ

L = V ∗, (5), (4), and (8), we immediately
obtain that ζτL = ζ∗, qτL = q∗, and rτL = r∗, respectively. Since underutilization does not
occur in the bubbly steady state, it also does not occur in the bubbleless steady state with
policies. From Yt = AζtKt and ζ

τ
L = ζ∗, we have Y τ

L,t/Kt = Y ∗
t /Kt. After aggregating (26a)

and (26b), we use V ∗ = V τ
L , ωt = vtKt, and (29) to obtain:

Cτ
L,t

Kt

=
ρ

V ∗ (1 +B∗) =
C∗
t

Kt

and
IτL,t
Kt

=
1− V ∗

σ2
(1 + B∗) =

I∗t
Kt

.

From (13), IτL,t/Kt = I∗t /Kt, and ζ
τ
L = ζ∗, we have gτL = g∗.

L Price Elasticity of the Aggregate Supply Curve : η 
= 1

This appendix demonstrates that even if η 
= 1, our main results remain unaffected. With
η 
= 1, the utilization rate and the general good supply are given by (4) and the first equality
of (6), respectively. These equations are reproduced here:

ζt =

(
AVt
δ1

)η

≡ ζ(Vt), (L.1)

Yt = A1+η

(
Vt
δ1

)η

Kt. (L.2)

The general good market clearing condition is not affected. The dynamics of Bt follow
(16). Let us reproduce these equations again:

Aζt =

(
ρ

Vt
+

1− Vt
σ2

)
(1 + Bt), (L.3)

Ḃt =

[
μ(1 + Bt) + AζtVt − 1− Vt

σ2
(1 + Bt)

]
Bt, (L.4)

Using (L.1), (L.3), and Bt = 0, we show the existence of the bubbleless steady state. The
following proposition is analogous to Proposition 2:

Proposition A1 Suppose that σ > 0. If and only if δ1 > 0 is sufficiently small to satisfy:

δ1
ηρ < A1+η, (L.5)

(L.3) has a unique positive solution VL ∈ (0, 1). Then, a unique bubbleless steady-state
equilibrium exists, where It > 0 and Vt = VL, Bt = 0, ζt = ζ(VL) ≡ ζL(< ζNR), qt = AζL −
δ(ζL)/VL = A1+η/(1+η)(VL/δ1)

η− δ2/VL ≡ qL, rt = qLVL = (AVL)
1+η/[(1+η)δ1

η]− δ2 ≡ rL,
and gt = (1 − VL)/σ

2 − δ(ζL) ≡ gL. In the bubbleless economy, the bubbleless steady-state
equilibrium is the only equilibrium.

(Proof) As V increases from 0 to 1, the LHS of (L.3) monotonically increases from 0 to
A1+η/δ1

η, whereas The RHS decreases from +∞ to ρ. Thus, (L.5) ensures that (L.3) has a
unique solution VL ∈ (0, 1). �

The existence of the bubbly steady state is shown by the following proposition that is
analogous to Proposition 3.
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Proposition A2 Suppose that σ > 0 and that the following two inequalities hold:

0 < σ < (ρ+ μ)−
1
2 and δ1

η < A1+ηV ∗η · Z, (L.6)

where

V ∗ ≡ 1− σ(ρ+ μ)
1
2 ∈ (0, 1) and Z ≡ 1− σ(ρ+ μ)

1
2

1
σ
(ρ+ μ)

1
2 − μ

. (L.7)

Then, a unique bubbly steady-state equilibrium exists, where It > 0 and Vt = V ∗ ∈ (0, 1),
ζt = ζ(V ∗) ≡ ζ∗, Bt = ZAζ∗ − 1 ≡ B∗(> 0), qt = Aζ∗ − δ(ζ∗)/V ∗ = A1+η/(1 + η)(V ∗/δ1)η −
δ2/V

∗ ≡ q∗, rt = q∗V ∗ = (AV ∗)1+η/[(1 + η)δ1
η] − δ2 ≡ r∗, ψt − rt = μ(1 + B∗)(> 0), and

gt =
1−V ∗
σ2 (1 + B∗)− δ(ζ∗) ≡ g∗.

(Proof) Set Ḃt = 0 in (L.4). Then, solving (L.3) and (L.4) yield V ∗ = 1 − σ(ρ + μ)
1
2 and

B∗ = ZAζ∗ − 1. �

The comparison between the bubbly and bubbleless steady states leads to the following
proposition:

Proposition A3 Suppose that both the bubbly and the bubbleless steady-state equilibria exist.
(i) Capital utilization: We have V ∗ > VL, q

∗ > qL, r
∗ > rL, and ζ

∗ > ζL.
(ii) Level effects: Suppose that both steady states have the same level of capital stock at time
t, K∗

t = KL,t. Then, we have Y ∗
t > YL,t. If VL > 1/2, we have C∗

t > CL,t. If ρ > 0 is
sufficiently small, we have I∗t > IL,t.
(iii) Growth effects: If ρ > 0 is sufficiently small, we have g∗ > gL.

(Proof) Both V ∗ and VL satisfy (L.3). Since B∗ > 0, we have V ∗ > V L. Notice that
q = A1+η/(1 + η)(V/δ1)

η − δ2/V and r = (AV )1+η/[(1 + η)δ1
η]− δ2 are increasing functions

of V . Also, ζ and Y increase with V (see (L.1) and (L.2)). Thus, we have q∗ > qL, r
∗ > rL,

ζ∗ > ζL, and Y
∗
t > YL,t.

If we follow the derivation of (G.3), we have:

Ct = ρ
A1+η

δ1
η V η−1

ρ
V
+ 1−V

σ2

Kt.

After taking a logarithm in the above equation, we differentiate it with respect to V and
then we obtain:

d lnCt
dV

= η

(
ρ

V
+

1− V

σ2

)
+

2V − 1

σ2
.

Then, d lnCt

dV
> 0 holds for V > 1/2. Thus, if VL > 1/2, we have C∗ > CL.

Similarly to (G.4), we have:

It =
A1+η

δ1
η V η (1− V )V

ρσ2 + (1− V )V
Kt. (L.8)
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Note that VL is a positive solution of:

A1+η

(
V

δ1

)η

=
ρ

Vt
+

1− Vt
σ2

.

Thus, as ρ→ 0, VL converges to a constant VL,ρ→0. Further, we have:

V ∗ = 1− σ
√
ρ+ μ→ 1− σ

√
μ
(≡ V ∗

ρ→0

)
, as ρ→ 0.

Thus, both VL and V ∗ converge to a constant as ρ→ 0. From (L.8), we have:

It → A1+η

δ1
η Vρ→0

ηKt, where Vρ→0 = V ∗
ρ→0 or VL,ρ→0.

Since V ∗ > VL, we have I∗t > IL,t if ρ > 0 is sufficiently small.
Like (G.7), the growth rate is written as:

g =
A1+η

δ1
η

(
X(V )V η − V 1+η

1 + 1/η

)
− δ2, where X(V ) ≡ (1− V )V

ρσ2 + (1− V )V
,

where (V, g) = (VL, gL) or (V
∗, g∗). We differential the above equation with respect to V :

∂g

∂V
=
A1+η

δ1
η

(
ηX(V )V η−1 +X ′(V )V η − ηV η

)
, where X ′(V ) =

ρσ2(1− 2V )

ρσ2 + (1− V )V
.

Since both VL and V ∗ converge to a constant as ρ→ 0, we have:

∂g

∂V
→ A1+η

δ1
η (1− Vρ→0) ηV

η−1 > 0 for Vρ→0 < 1.

where Vρ→0 = VL,ρ→0 or V ∗
ρ→0. Thus, since 0 < VL < V ∗ < 1, we have g∗ > gL for sufficiently

small ρ > 0. �

Dynamics after Bubble Crash: Proposition 4 holds even if η 
= 1, except when C∗
t > CL,t.

To prove that C∗
t > CL,t, we need an additional condition: VL > 1/2. When VL > 1/2 is

met, a collapse of the bubble leads to a demand-driven recession, as discussed in Section 5.

ZLB: Proposition A3 shows that a collapse of bubbles puts downward pressure on the general
good price V and the interest rate r. As discussed in Section 6, this bubble crash leads to a
binding ZLB, causing underutilization of capital.

Aggregate Demand Policy: With the consumption subsidy τc and the public insurance
τI , (L.3) is modified as:

Aζt =

[
1

(1− τc)

ρ

Vt
+ (1 + τI)

1− Vt
σ2

]
(1 +Bt),

which is exactly the same as (27). Clearly, an increase in τc, stimulating the aggregate
demand, increases the general good production. Furthermore, if τc and τσ satisfy:

1

1− τc
= 1 + τI = 1 +B∗,

then, the bubbleless economy achieves the same allocation as the bubbly economy.
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M Neoclassical Technology

This appendix demonstrates that the main results from the AK model hold when using a
neoclassical production function. Entrepreneurs solve the same utility maximization problem
as in the AK model, so (11a)-(11d) and (12a)-(12c) remain valid.

Production sector: Consider the following production technology:

Yt = F (ζtKt, AtLt), At > 0, (M.1)

where At grows over time at an exogenous constant rate g ≡ Ȧt/At > 0 and Lt represents
labor demand. We assume that F is continuous, exhibits constant returns to scale, and has
positive and diminishing marginal products in both K and L, satisfying the Inada conditions.
Additionally, we assume F (0, AtLt) = F (ζtKt, 0) = 0. In (M.1), the utilization rate ζt works
like capital-augmenting productivity. Thus, we assume that the marginal product of capital,
∂F (ζtKt, AtLt)/∂Kt = ζt∂F (ζtKt, AtLt)/∂(ζtKt), increases with ζt.

The profit of the firm is given by ΠY
t = F (ζtKt, AtLt) − wtLt − qtKt − δ(ζt)vtKt, where

wt denote the wage rate and δ(ζt) is given by (2). We define kt ≡ Kt/(AtLt) and yt ≡
Yt/(AtLt) = F (ζtKt/(AtLt), 1) = f(ζtkt). All markets are competitive and the profit maxi-
mization gives the following equations:

qt = ζtf
′(ζtkt)− δ(ζt)vt, (M.2)

wt = At [f(ζtkt)− f ′(ζtkt)ζtkt] , (M.3)

f ′(ζtkt) = δ′(ζt)vt, (M.4)

where f ′(ζtkt) ≡ df(ζtkt)
dζtkt

and δ′(ζt) ≡ dδ(ζt)
dζt

.

Workers: The number of workers is denoted as L, which remains constant over time. Work-
ers supply one unit of labor inelastically and earn a wage rate wt. In equilibrium, Lt = L
holds. We assume that workers consume their entire labor income in a hand-to-mouth man-
ner. The aggregate consumption of workers, Cw

t , is given by:

Cw
t = wtL. (M.5)

Equilibrium dynamics: The following proposition characterizes equilibrium dynamics.

Proposition A4 Suppose that σ > 0. In an equilibrium where It > 0 holds, Vt, Bt, kt, and
ζt are determined by the following four equations:

f ′(ζtkt)ζt =
(
ρ

Vt
+

1− Vt
σ2

)
(1 + Bt), (M.6)

Ḃt =

{
μ(1 +Bt) + f ′(ζtkt)ζtVt − 1− Vt

σ2
(1 + Bt)

}
, (M.7)

k̇t =

{
1− Vt
σ2

(1 +Bt)− δ(ζt)− g

}
kt, (M.8)

δ′(ζt) = f ′(ζtkt)Vt. (M.9)
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Proof: See Appendix M.1.

Existence of the bubbly steady-state equilibrium: As in the AK model, the subscript
L and the asterisk ∗ denote the values for the bubbleless and bubbly steady-state equilibria,
respectively. The following proposition demonstrates the existence of both the bubbleless
and bubbly steady-state equilibria.

Proposition A5 Suppose that σ > 0, (1 + η)(g + δ2)− ημ > 0, and δ2 is sufficiently small.

Define σ ≡ (ρ+μ)
1
2

(1+η)(g+δ2)−ημ and σ ≡
[
g + δ2 +

(
η

1+η

)
ρ
]− 1

2
. Then, the following holds.

(i) If σ ≤ σ, then only the bubbleless steady-state equilibrium exists.
(ii) If σ < σ < σ, then both bubbly and bubbleless steady-state equilibria exist.

(iii) If σ ≤ σ < (ρ+ μ)−
1
2 , then only the bubbly steady-state equilibrium exists.

(iv) If (ρ+ μ)−
1
2 ≤ σ, then neither a bubbly nor a bubbleless steady-state equilibrium exists.

Proof: See Appendix M.2.

If σ is in an intermediate range (case (ii)), both the bubbly and bubbleless steady states
exist.

Comparison between steady states: We define ct ≡ Ct/AtL, c
w
t ≡ Cw

t /AtL, and it ≡
It/AtL, respectively. We prove the following proposition.

Proposition A6 Suppose that the bubbleless and bubbly steady stats exist (the case of (ii)
in Proposition A5).
(i) We have

ζ∗ > ζL, V ∗ > VL, and r∗ > rL.

(ii) Suppose that σ is sufficiently close to σ =
[
g + δ2 +

(
η

1+η

)
ρ
]− 1

2
. Then, we have

k∗ > kL, c∗ > cL, cw
∗
> cwL , i∗ > iL, and y∗ > yL. (M.10)

Proof: See Appendix M.3.

Proposition A6 shows that the presence of a bubble increases capital accumulation. Although
Propositions 4 and A6 share similarities, they differ in key aspects. Unlike the AK economy,
an economy with a neoclassical production function typically has transitional dynamics.
After a bubble crash, the economy gradually converges to the new steady state. Thus, the
comparison between the two steady states (Proposition A6) does not provide any insight into
the immediate impact of the bubble crash.

Dynamics after Bubble Crashes in the Neoclassical Economy: To assess the imme-
diate effects of bubble collapses, we must explore the transitional dynamics. We demonstrate
that, similar to the AK model, the collapse of bubbles leads to a demand-driven recession.

Figure A2 shows the phase diagram and illustrates the dynamics of kt after the collapse
of bubbles (see Appendix M.4). Initially, the economy is in the bubbly steady state (point a)
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kt0

1 + Bt

k∗kL

a

bc
1 Bt = 0

(M.44) (k̇t = 0)(M.43)(Ḃt = 0)

Figure A2 Phase Diagram

in Figure A2. When bubbles collapse (B∗ = 0), the economy shifts to point b. From there,
capital kt decreases monotonically over time and eventually converges to kL (point c). The
inequality kL < k∗ indicates that the bubble crash leads to a long-term recession.

Appendix M.4 shows that the relative price of the general good, Vt, and the utilization
rate, ζt, are both increasing functions of Bt. As a result, a collapse of bubbles causes a
sudden contraction in both ζt and Vt. The underlying reason is straightforward: a bubble
crash triggers a negative wealth effect, which immediately reduces aggregate demand.

Since general good production is given by (M.1) and Kt remains constant in the short
run, the reduction in utilization leads to a sharp drop in general good production. Following
the bubble bust, as capital stock gradually decreases, capital production It also contracts.
Using (2) and (M.4), we can rewrite the capital rental rate (M.2) as:

qt =
1

1 + 1/η
ζtf

′(ζtkt)− δ2
Vt
.

The capital rental rate increases with Vt. Since the utilization rate, ζt, raises the marginal
product of capital, ζtf

′(ζtkt), the capital rental rate also rises with ζt. As a result, the rental
rate drops suddenly at the moment of a bubble collapse.

The effect on entrepreneurs’ consumption, however, is ambiguous. In contrast, the col-
lapse of the bubble clearly reduces the labor wage rate and workers’ consumption through
its impact on utilization (see (M.3) and (M.5)).

Price Rigidity in the Neoclassical Economy: A collapse of bubbles leads to a drop in
the general good price, Vt. In the presence of price rigidity, this can result in underutiliza-
tion, which exacerbates the demand-driven recession, similar to the effects observed in the
benchmark AK model.

Demand Policy in the Neoclassical Economy: As discussed in Section 7, consider the
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consumption subsidy, τc,t, and the capital creation subsidy, τI,t. We assume that the subsidy
rates vary over time. Entrepreneurs in this extended model behave in the same manner as in
the benchmark model. In the bubbleless economy, the equilibrium dynamics are characterized
by:

f ′(ζtkt)ζt =
1

1− τc,t

ρ

Vt
+ (1 + τI,t)

1− Vt
σ2

, (M.11)

k̇t =

{
(1 + τI,t)

1− Vt
σ2

− δ(ζt)− g

}
kt, (M.12)

δ′(ζt) = f ′(ζtkt)Vt. (M.13)

Suppose that τc,t and τI,t satisfy

1

1− τc,t
= 1 + τI,t = 1 +Bt,

where Bt represents the asset bubbles in the bubbly economy, with τc,t = τI,t = 0, and follows
the dynamic system given by (M.6), (M.7), (M.8), and (M.9). In the bubbleless economy,
the dynamics remain the same as in the bubbly economy, except for Bt.

M.1 Proof of Proposition A4

In the neoclassical economy, the market clearing condition for general goods is given by
Yt = Ct+C

w
t +It. All markets are competitive, and the equation Yt = qtKt+δt(ζt)vtKt+wtL

holds. From this equation, (M.2), and (M.5), we obtain ζtf
′(ζtkt)Kt = Ct+ It. Next, similar

to the derivation of (15), we can rewrite ζtf
′(ζtkt)Kt = Ct+It as (M.6) by using (12a), (12b),

(12c), (14), and Vt = 1/vt. (M.7) is derived in the same way as the derivation of (16), except
for the term qt = ζtf

′(ζtkt)− δ(ζt)vt. From kt = Kt/AtL, we obtain:

k̇t
kt

=
It
Kt

− δ(ζt)− g. (M.14)

Substituting (12c), (14), and Vt = 1/vt into (M.14) yields (M.8). Equation (M.13) is derived
by (M.4) and Vt = 1/vt. �

M.2 Proof of Proposition A5

First, we prove the following two lemmas, which provide the existence conditions for the
bubbleless and bubbly steady-state equilibria, respectively.

Lemma A1 Suppose that σ > 0 and δ2 is sufficiently small. If and only if

σ <
1(

g + δ2 +
η

1+η
ρ
) 1

2

≡ σ (M.15)

holds, the following equation has a unique positive solution VL ∈ (0, 1)

ρ+

(
1 +

1

η

)
(g + δ2) =

1− V

σ2

(
1 +

1

η
− V

)
. (M.16)
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Then, a unique bubbleless steady-state equilibrium exists such that It > 0 holds and Vt =

VL, ζt, kt, qt, and rt satisfy δ1ζ
1+ 1

η

L = ρ + (1 − VL)VL/σ
2, f ′(ζLkL) = δ1ζ

1
η

L /VL, qL =
[ζLδ

′(ζL)− δ(ζL)] /VL (> 0), rL = qLVL, respectively.

(Proof) Using Bt = 0, k̇t = 0, (2), and (M.13), we rewrite (M.6) and (M.8) as(
1 +

1

η

)
(δ(ζt)− δ2) = ρ+

(1− Vt)Vt
σ2

, (M.17)

1− Vt
σ2

= δ(ζt) + g, (M.18)

respectively, where we use δ′(ζt)ζt = δ1ζ
1+ 1

η

t =
(
1 + 1

η

)
(δ(ζt)−δ2). From (M.17) and (M.18),

we have (M.16). The RHS of (M.16) monotonically decreases from 1
σ2

(
1 + 1

η

)
to 0 as V

increases from 0 to 1. Thus, (M.16) has a unique positive solution VL ∈ (0, 1) if and only if

ρ+
(
1 + 1

η

)
(g+ δ2) <

1
σ2

(
1 + 1

η

)
, or equivalently (M.15). From V = 1/v, Bt = 0, and (12c),

we have It = (1− VL)Kt/σ
2. Thus It > 0 holds if and only if VL ∈ (0, 1).

From Bt = 0, (2), (M.6), and (M.13), we have δ1ζ
1+ 1

η

L = ρ + (1 − VL)VL/σ
2, which

determines ζL. From (2) and (M.13), we have f ′(ζLkL) = δ1ζ
1
η

L /VL, which gives kL. The

Inada condition ensures that f ′(ζLkL) = δ1ζ
1
η

L /VL has a unique value of kL. Using f
′(ζLkL) =

δ1ζ
1
η

L /VL, and VL = 1/vL, we rewrite (M.2) as

qL =
ζLδ

′(ζL)− δ(ζL)

VL
=

1

VL

(
1

1 + η
δ1ζ

1+ 1
η

L − δ2

)
. (M.19)

This equation shows that qL is continuous in δ2 and qL > 0 holds if δ2 = 0. Thus, qL > 0
holds for sufficiently small δ2 > 0. From VL = 1/vL and (8), we have rL = qLVL. �

Lemma A2 Suppose that σ > 0, (1+η)(g+δ2)−ημ > 0, and δ2 is sufficiently small. Then,
a unique bubbly steady-state equilibrium exists such that It > 0 holds, and V ∗ and B∗ satisfy

V ∗ = 1− σ(μ+ ρ)
1
2 (> 0), (M.20)

B∗ =
σ(1 + η)(g + δ2)

(ρ+ μ)
1
2 + ημσ

− 1 (> 0), (M.21)

if and only if

σ ≡ (ρ+ μ)
1
2

(1 + η)(g + δ2)− ημ
< σ <

1

(ρ+ μ)
1
2

. (M.22)

ζ∗, k∗, q∗, and r∗ are given by δ1ζ
∗1+

1
η
= [ρ+ (1− V ∗)V ∗/σ2] (1+B∗), f ′(ζ∗k∗) = δ1ζ

∗
1
η
/V ∗,

q∗ = [ζ∗δ′(ζ∗)− δ(ζ∗)] /V ∗ (> 0), r∗ = q∗V ∗, respectively.

(Proof) Suppose that Bt > 0. From Ḃt = 0, (M.7), and (M.13), we have

δ′(ζt)ζt =
(
1− Vt
σ2

− μ

)
(1 + Bt). (M.23)
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Substituting (M.13) and (M.23) into (M.6) yields V = 1− σ(ρ+ μ)1/2. Using Vt = 1/vt and
(14), we rewrite (12c) as It = (1 − Vt)(1 + Bt)Kt/σ

2, meaning that It > 0 holds if Vt < 1.
Thus, we obtain (M.20).

We set k̇t = 0 in (M.8) and have (1 − Vt)(1 + Bt)/σ
2 = δ(ζt) + g. From this equation,

(M.6), (M.13), and the relation δ′(ζ)ζ = δ1ζ
1+ 1

η =
(
1 + 1

η

)
(δ(ζ)− δ2), we have

ρ+

(
1 + 1

η

)
(g + δ2)

1 +B
=

1− V

σ2

(
1 +

1

η
− V

)
. (M.24)

Substituting (M.20) into (M.24) and solving for Bt yields (M.21).

Suppose that V ∗ > 0 and B∗ > 0. Then, we have σ < 1/(ρ + μ)
1
2 and (ρ + μ)

1
2/[(1 +

η)(g + δ2)− ημ] < σ, and thus the condition (M.22) holds. Conversely, suppose that (M.22)

holds. The inequality σ < 1/(ρ + μ)
1
2 implies 0 < V ∗ < 1 and It > 0. The inequality

(ρ+ μ)1/2/[(1 + η)(g + δ2)− ημ] < σ ensures B∗ > 0.
With B∗ > 0, ζ∗, k∗, q∗, and r∗ are obtained in the same way in Lemma A1. �

We now prove Proposition A5. From (M.22), we have the following relationship:

ρ+ μ < (1 + η)(g + δ2)− ημ. (M.25)

The inequality implies the following relationship:

(ρ+ μ)1/2

(1 + η)(g + δ2)− ημ
=

(ρ+ μ)1/2

[(1 + η)(g + δ2)− ημ]1/2
1

[(1 + η)(g + δ2)− ημ]1/2

<
1

[(1 + η)(g + δ2)− ημ]1/2

<
1(

g + δ2 +
η

1+η
ρ
)1/2

<
1

(ρ+ μ)1/2
.

The second, third, and last lines use (M.25). Thus, we have:

(ρ+ μ)1/2

(1 + η)(g + δ2)− ημ
<

1(
g + δ2 +

η
1+η

ρ
)1/2

<
1

(ρ+ μ)1/2
. (M.26)

From Lemma A1, A2, and (M.26), Proposition (A5) is proved. �

M.3 Proof of Proposition A6

Since the LHS of (M.24) decreases with B, (M.16) and (M.24) imply

1− VL
σ2

(
1 +

1

η
− VL

)
>

1− V ∗

σ2

(
1 +

1

η
− V ∗

)
. (M.27)

20



Thus, we have V ∗ > VL.
From (M.16) and (M.24), irrespective of whether bubbles exist or not, the following

equation holds:

ρ(1 +B) +
(
1 + 1

η

)
(g + δ2)(

1 + 1
η
− V

) =
1− V

σ2
(1 + B), (M.28)

where (V,B) = (VL, 0) or (V,B) = (V ∗, B∗). The LHS of (M.28) increases with V and B.
From k̇t = 0, V ∗ > VL, B

∗ > 0, (M.8), and (M.28), we have the following relationship:

δ(ζ∗) + g =
1− V ∗

σ2
(1 +B∗) >

1− VL
σ2

= δ(ζL) + g, (M.29)

where δ(ζ) increases with ζ. Thus, ζ∗ > ζL holds.
From r = qV and (M.19), we rewrite r as:

r =
1

1 + η
δ1ζ

1+ 1
η − δ2, (M.30)

where (r, ζ) = (rL, ζL) or (r, ζ) = (r∗, ζ∗). From ζ∗ > ζL, we have r∗ > rL.

We now prove (M.10). Suppose that σ is sufficiently close to σ = 1/
[
g + δ2 +

(
η

1+η

)
ρ
] 1

2
.

Note that VL is a positive solution of (M.16). By solving (M.16) for V , we have:

VL = 1− 1

2

{
−1

η
+

√
1

η2
+ 4σ2

[
ρ+

(
1 +

1

η

)
(g + δ2)

]}
→ 0 as σ → σ. (M.31)

From (2) and (M.18), we have

η

1 + η
δ1ζ

1+ 1
η

L + δ2 =
1− VL
σ2

− g → δ2 +
η

1 + η
ρ, as σ → σ. (M.32)

Thus, we have:

ζL →
(
ρ

δ1

) 1

1+ 1
η ≡ ζL as σ → σ. (M.33)

Then, (M.13), (M.31), and (M.33) imply:

f ′(ζLkL) =
δ′(ζL)
VL

→ f ′(ζLkL) =
δ(ζL)

0
= +∞ as σ → σ. (M.34)

Since f satisfies the Inada condition, we have:

kL → 0, as σ → σ. (M.35)

(M.35) implies that as σ converges to σ, yL = YL,t/AtL = f(ζLkL) also converges to zero.
From Vt = 1/vt, (12b), and (12c), we have:

cL =
CL,t
AtL

=
ρ

VL
kL and iL =

IL,t
AtL

=
1− VL
σ2

kL. (M.36)
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From (M.35), cL and iL converge to zero, respectively. The market clearing condition cwL =
yL − cL − iL implies that cwL also converge to zero.

The definition of σ and (M.26) imply:

(ρ+ μ)
1
2

(1 + η)(g + δ2)− ημ
< σ <

1

(ρ+ μ)
1
2

. (M.37)

From Lemma A2, the bubbly steady state exists and we have V ∗ > 0, ζ∗ > 0, k∗ > 0, y∗ > 0,
c∗ > 0, cw

∗
> 0, and i∗ > 0 if σ = σ, where c∗ and i∗ are given by:

c∗ =
C∗
t

AtL
=

ρ

V ∗ (1 +B∗)k∗ > 0 and i∗ =
IL,t
AtL

=
1− V ∗

σ2
(1 +B∗)k∗ > 0. (M.38)

Thus, we have (M.10) if σ is sufficiently close to σ. Proposition A6 is proved. �

M.4 Phase Diagram

To draw the phase diagram in Figure A2, we first demonstrate that Vt and ζt are functions
of kt and Bt. Given kt and Bt, we plot the graphs of (M.6) and (M.13) in the (ζt, Vt) plane
(see Figure A3). The LHS of (M.6) represents the marginal productivity of capital, which
increases with ζt because ζt works like a capital-augmenting productivity. The RHS of (M.6)
decreases with Vt. As a result, the graph of (M.6) is downward-sloping. The graph of (M.13)
is upward-sloping because the term δ′(ζt)/f ′(ζtkt) increases with ζt. This occurs because
δ′′(ζt) > 0 and f ′′(ζtkt) < 0. Given kt and Bt, the graphs of (M.6) and (M.13) intersect at a
single point. Thus, Vt and ζt can be expressed as functions of kt and Bt:

Vt = V (kt, Bt) and ζt = ζ(kt, Bt). (M.39)

Figure A2 (a) shows that an increase in Bt shifts the graph of (M.6) to the right. As
shown in Figure A2 (b), an increase in kt shifts the graph of (M.6) to the right and the graph
of (M.13) to the left. Thus, we have:

∂V (kt, Bt)

∂kt
> 0,

∂V (kt, Bt)

∂Bt

> 0, and
∂ζ(kt, Bt)

∂Bt

> 0. (M.40)

From (M.6) and (M.13), we have:

∂δ′(ζt)ζt
∂kt

=
1 + Bt

σ2
(1− 2Vt)

∂Vt
∂kt

> (=)(<)0 ⇐⇒ Vt < (=)(>)
1

2
. (M.41)

Since δ′(ζt)ζt increases with ζt and ∂Vt/∂kt > 0, the following holds:

∂ζt
∂kt

> (=)(<)0 ⇐⇒ Vt < (=)(>)
1

2
. (M.42)

We now derive the Ḃt = 0 locus. By substituting (M.6) into (M.7), setting Ḃt = 0 in
(M.7), and solving for Vt = V (k,B), we obtain:

V (k,B) = 1− σ(ρ+ μ)
1
2 . (M.43)
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Vt

ζt
ζ(kt, Bt)

(M.13)

(M.6)

V (kt, Bt)

(a) increase in Bt

ζt

Vt
(M.13)

(M.6)

V (kt, Bt)

(b) increase in kt

ζ(kt, Bt)

Figure A3 V (kt, Bt) and ζ(kt, Bt)

The Ḃt = 0 locus represents the combination of k and B that satisfies (M.43). Since
∂Vt/∂kt > 0 and ∂Vt/∂Bt > 0, the Ḃt = 0 locus is downward sloping. In the region be-
low (above) the Ḃt = 0 locus, we have Ḃt < 0 ( Ḃt > 0), as shown in Figure A2.

Next, we derive the k̇t = 0 locus. Setting k̇t = 0 in (M.8) yields:

1− V (k,B)

σ2
= δ(ζ(k,B)) + g. (M.44)

The k̇t = 0 locus represents the combination of k and B that satisfies (M.44). Since the
bubbly steady-state is unique and kL < k∗ holds, we can plot the k̇t = 0 locus as shown
in Figure A2. We assume that the partial derivative of (M.8) with respect to kt around
(kt, Bt) = (kL, 0) is negative:

− 1

σ2

∂V (kt, Bt)

∂kt

∣∣∣∣
kt=kL,Bt=0

− δ1ζ
1
η

L

∂ζ(kt, Bt)

∂kt

∣∣∣∣
kt=kL,Bt=0

< 0, (M.45)

which ensures that k̇t < 0 around the bubbleless steady-state equilibrium. Then, in the
region above (below) the k̇t = 0 locus, we have k̇t > 0 (k̇t < 0). As a result, the phase
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diagram in Figure A2 is obtained. The bubbly steady state is saddle-point stable, and the
bubbleless steady state is stable. Consequently, after bubbles collapse, kt converges to kL.
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