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Abstract

By applying a simple dynamic general equilibrium model without exoge-
nous shocks inhabited by infinitely lived capitalists and workers, we show that
a higher degree of relative risk aversion can destabilize an economy. In tradi-
tional real business cycle (RBC) theory, a higher degree of relative risk aversion
dampens the amplitude of the consumption fluctuations caused by exogenous
shocks through consumption smoothing. However, a higher degree of relative
risk aversion combined with a high degree of elasticity of the marginal product
of capital can also lead to the emergence of a nonlinear mechanism that causes
endogenous business fluctuations. The nontrivial steady state loses stability
due to the higher degree of relative risk aversion; thus, endogenous business
fluctuations can occur. This result suggests that for a deeper understanding of
boom-bust cycles, researchers should merge exogenous and endogenous business
fluctuations when investigating economies.

Keywords: endogenous business fluctuations, relative risk aversion, dynamic general
equilibrium, instability.

JEL Classification Numbers: E1, E2, E3.

∗Professor at Kobe University. Address: Graduate School of Economics, Kobe University, Rokko-
dai 2-1, Kobe 657-8501, Japan; E-mail: hashimoto@econ.kobe-u.ac.jp

†Associate Professor at Kwansei Gakuin University. Address: School of Economics, Kwansei
Gakuin University, 1-155 Uegahara Ichiban-cho, Nishinomiya 662-8501, Hyogo, Japan; E-mail: ry-
onghun@kwansei.ac.jp

‡Corresponding author. Professor at Kwansei Gakuin University. Address: School of Economics,
Kwansei Gakuin University, 1-155 Uegahara Ichiban-cho, Nishinomiya 662-8501, Hyogo, Japan;
Phone: +81 798 54 6482, Fax: +81 798 51 0944, E-mail: tkunieda@kwansei.ac.jp

§Professor at Kyoto University. Address: Institute of Economic Research, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; E-mail: shibata@kier.kyoto-u.ac.jp



1 Introduction

In real business cycle (RBC) theory pioneered by Kydland and Prescott (1982), the

origin of business fluctuations is exogenous shocks. In theory, a higher degree of

relative risk aversion in consumer preferences dampens the amplitude of the con-

sumption fluctuations caused by exogenous shocks through consumption smoothing.1

In calibration analyses of dynamic stochastic general equilibrium (DSGE) models,

consumers are often assumed to be endowed with the constant-relative-risk-aversion

(CRRA) utility function. In the Euler equation, a higher degree of relative risk aver-

sion activates consumption smoothing, mitigating the impact of exogenous shocks on

consumption volatility. Figure 1 in Havranek et al. (2015) illustrates the simulated

impulse responses of changes in consumption and investment to an increase in the

monetary policy rate, which shows that those economic fluctuations caused by the

monetary shock diminish as the degrees of elasticity of intertemporal substitution

(EIS) become lower (or equivalently, degrees of relative risk aversion become high

with the CRRA utility function).

Given the theoretical insights from modern macroeconomic theory, we expect the

degree of relative risk aversion to mitigate economic volatility. We then regress the

variance of consumption growth on the squared degree of relative risk aversion and

the variance of interest rates (logarithms all) using cross-country data.2 The result

of ordinary least squares (OLS) regression is as follows:

log(vaci) = 2.452

(0.160)

[2.127, 2.777]

[2.121, 2.784]

+0.357

(0.088)

[0.177, 0.536]

[0.181, 0.532]

× log(vaii) −0.003

(0.045)

[−0.096, 0.088]

[−0.103, 0.095]

× log(γ2
i ) + νi,

where vaci is the variance of country i’s consumption growth, vaci is the variance of

the interest rate, γi is the degree of relative risk aversion, and νi is the error term.

1Concerning consumption smoothing, Barro and Sala-i-Martin’s (2004, Figure 2.2 in Ch.2) text-
book illustrates that the degree of risk aversion affects the slope of the equilibrium path.

2Many empirical studies produce evidence that the degree of relative risk aversion differs across
countries (Chiappori and Paiella, 2011; Gandelman and Hernandez-Murillo, 2014; Havranek et al.,
2015; Banerjee, 2020). For our regression, we prepare data on the degree of relative risk aversion
computed from the data for the EIS obtained from Havranek et al. (2015). We collect macroeconomic
data from Penn World Table, version 10.01 (PWT 10.01; Feenstra et al., 2015). The data description
and the estimation equation specified by the Euler equation are provided in the Appendix.
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The figures in parentheses are standard errors. Those figures inside the brackets in

the upper row indicate the 95% confidence intervals from the OLS estimation, and

those in the lower row indicate the intervals from bootstrapping. The effect of the

variance of the interest rate on the variance of consumption growth is positive and

significant, which is consistent with theory. The point estimate of the coefficient

of log(γ2
i ) is −0.003, the sign of which agrees with theory. However, this estimate

is insignificant, and its absolute impact is too small relative to theory because we

expect the coefficient to be −1 according to the Euler equation. Furthermore, Figure

1 provides the result of the semiparametric estimation by replacing log(γ2
i ) in the

linear estimation equation with an unspecified function of log(γ2
i ). As seen in the

figure, there is no negative relationship between log(γ2
i ) and log(vaci), whereas the

impact of the linear term of log(vaii) remains significant (although we do not report

it here).

These puzzling empirical observations lead us to the following natural questions:

Do other mechanisms produce business fluctuations in economies? Does a higher de-

gree of relative risk aversion only play a role in consumption smoothing? Is there not

the possibility of a higher degree of relative risk aversion destabilizing an economy?

To answer these questions, we presumably consider that an economy’s nonlinearity

originating from a higher degree of relative risk aversion causes business fluctuations.

If the effect of nonlinearity outweighs consumption smoothing, then business fluctua-

tions may be more amplified. Thus far, the literature has not sufficiently investigated

the mechanism produced by an economy’s nonlinearity resulting from a higher degree

of relative risk aversion. In this work, we explore this mechanism.

Traditionally, there are two kinds of microfounded theoretical models for explain-

ing business cycles in macroeconomics. One is based on the model of Kydland and

Prescott (1982), followed by subsequent vast literature. We may refer to it as RBC

theory, but more widely, this can be referred to as the DSGE model because it in-

volves both monetary and nonmonetary components. In this context, researchers

have focused on how exogenous shocks propagate across the economy, thus driving

business cycles. For example, regarding the relation of shock-driven business cycles

to the degree of risk aversion, Chen et al. (2020) presented the DSGE framework

to investigate economic fluctuations with state-dependent risk aversion. The other
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Figure 1: Consumption instability versus degree of relative risk aversion

-2

0

2

4

6
Lo

g 
of

 c
on

su
m

pt
io

n 
va

ria
nc

e

-2 0 2 4 6 8
Log of squared relative risk aversion

Notes. This graph shows the result of the semiparametric estimation of the log of
the variance of consumption growth regressed on the log of the squared degree of
relative risk aversion. The shaded area indicates the 95% confidence interval given
at each squared degree of relative risk aversion. The number of sample countries is
38. The data for the degree of relative risk aversion are assembled from Havranek et
al. (2015). We collected macroeconomic data from Penn World Table, version 10.01
(PWT 10.01; Feenstra et al., 2015). See the Appendix for the data description and
estimation specification.

originates from the models of Benhabib and Nishimura (1979,1985) and Grandmont

(1985), again followed by subsequent vast literature. This strand stresses that the

internal force of an economy generates business cycles endogenously. Even though

shocks are absent in an economy, business cycles can arise because of an economy’s

nonlinearity in equilibrium. Beaudry et al. (2015, 2017, 2020) provided supportive

evidence of endogenous business cycles. Our study belongs to the second abovemen-

tioned stream. We aim to investigate how a higher degree of relative risk aversion

causes the nonlinearity of an economy and generates endogenous business cycles.

Standard RBC theory ignores this mechanism.

We apply a simple dynamic general equilibrium model without any exogenous
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shocks inhabited by infinitely lived capitalists and workers, which is otherwise fairly

similar to the standard Ramsey model. In each period, capitalists and workers earn

capital and wage income, respectively. Workers consume all their income in each

period: they are hand-to-mouth consumers. Capitalists optimally consume or save

their income in each period, and their savings become capital stock due to the as-

sumption of a closed economy. In equilibrium, we derive the two-dimensional dynam-

ical system with respect to the consumption-to-capital-income ratio (i.e., capitalists’

marginal propensity to consume) and capital stock. We obtain a unique nontrivial

steady state. Given the high level of elasticity of the marginal product of capital, if

the degree of relative risk aversion is also high, then the steady state loses stability,

and endogenous business fluctuations can appear. Intuitively, if an investment boom

occurs with a given capital income in a certain period, say, period t, the consumption-

to-capital-income ratio decreases in this period. Since the interest rate becomes lower

under a high level of elasticity of the marginal product of capital, capital income

decreases in period t + 1. In this situation, if the degree of relative risk aversion is

low, the consumption-to-capital-income ratio does not change significantly or even de-

creases because consumption smoothing does not work sufficiently, with consumption

decreasing greatly in response to the decrease in capital income. The invariability of

the consumption-to-capital-income ratio mitigates the negative impact of a reduction

in capital income on investment in period t + 1. In such a case, endogenous busi-

ness fluctuations do not occur. However, when the degree of relative risk aversion

is high, consumption smoothing works sufficiently; thus, the consumption-to-capital-

income ratio becomes large (because the denominator becomes small). An increased

consumption-to-capital-income ratio increases the negative impact of decreased capi-

tal income on investment in period t+1. In this case, endogenous business fluctuations

occur. The unique characteristic of this mechanism is that consumption smoothing

creates the nonlinearity that generates endogenous fluctuations.

The current paper belongs to the literature on (deterministic) endogenous business

cycles in the dynamic general equilibrium model with infinitely lived agents; however,

it is too exhaustive to list all the papers because many researchers have addressed this

topic over the past forty years. For example, Woodford (1989) developed a model with

infinitely lived capitalists and workers and derived conditions under which endogenous
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business cycles can occur. Moreover, Hashimoto et al. (2022) considered an economy

with capitalists and workers and demonstrated that endogenous business cycles occur

as credit constraints are relaxed. Although Benhabib and Nishimura (1979, 1985),

Boldrin and Deneckere (1990), and Nishimura and Yano (1995) also employed models

of infinitely lived agents to obtain endogenous business cycles, they assumed two

production sectors. Additionally, Aghion et al. (2004), Pintus (2011), and Kunieda

and Shibata (2017) employed models of infinitely lived agents but studied economies

with financial frictions to derive endogenous business cycles. In contrast to the current

paper, these studies do not analyze the nonlinearity created by risk aversion, which

generates endogenous business fluctuations. The following overlapping generations

models have studied the endogenous business cycles caused by a high degree of relative

risk aversion: Benhabib and Day (1982), Bertocchi and Wang (1995), Grandmont

(1985), and Reichlin (1992). However, these works did not consider a production

sector with capital stock, assuming a pure-exchange economy, and derived oscillations

with money.3 Our model assumes a production economy with capital stock but

without money by employing a Ramsey-type model of infinitely lived agents. By

doing so, we can elucidate the unidentified role of the degree of relative risk aversion,

directly compare it to RBC models, and stimulate a discussion on the deficit of those

models.

The remainder of the current paper is organized as follows. In the next section,

we present the basic structure of the model. In section 3, we derive a dynamical

system in equilibrium, and in section 4, we investigate period-two cycles. Section

5 concludes the paper. In the Online Appendix, bifurcation diagrams present the

concrete occurrence of endogenous business cycles.

2 Model

The economy consists of infinitely lived firms and two types of infinitely lived agents:

capitalists and workers. Time is discrete and indexed by t, ranging from t = 0 to

∞. In each period, capitalists lend their physical assets to firms and earn capital

3Many other studies also employed overlapping generations models, such as Farmer (1986), Re-
ichlin (1986), Benhabib and Laroque (1988), Grandmont et al. (1998), Rochon and Polemarchakis
(2006), and Yokoo (2000). Although these studies introduced production sectors, they still derived
oscillations with money.
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income. Workers supply labor inelastically to firms and receive wage income. Firms,

capitalists, and workers are homogeneous, and we then consider the representative

for each entity. The populations of firms and capitalists are one, and that of workers

is L.

2.1 Capitalist

In each period, the representative capitalist obtains its utility from consumption ct

with the CRRA utility function u(ct), which is given by

u(ct) =

{
c1−γ
t −1

1−γ
if γ ̸= 1 and γ > 0

log ct if γ = 1,

where γ represents the degree of relative risk aversion. The capitalist maximizes

lifetime utility

Ut :=
∞∑
t=0

βtu(ct),

subject to

at+1 + ct = rtat, (1)

where β ∈ (0, 1) is the capitalist’s subjective discount factor, at denotes the asset

holdings in period t, and rt is the gross market interest rate. The initial budget con-

straint is given by a1 + c0 = ã0, where ã0 > 0 is initial wealth. For exposition, we let

ã0 = r0a0, although the interest rate is determined from t = 1 onward. The neces-

sary and sufficient conditions for the optimality of the lifetime utility maximization

problem consist of the Euler equation,(
ct+1

ct

)γ

= βrt+1, (2)

and the transversality condition,

lim
t→∞

βt

(
at+1

cγt

)
= 0. (3)

The ratio of consumption to capital income is defined as θt := ct/(rtat). Then,
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Eqs. (1) and (2), respectively, yield the following dynamic equations:

θt+1 =
β

1
γ r

1
γ
−1

t+1

1− θt
θt, (4)

at+1 = (1− θt)rtat, (5)

where 1− θt captures the marginal propensity to save.

2.2 Workers

In each period, each worker earns wage income wt. Workers are hand-to-mouth con-

sumers and consume their wage income entirely in each period.4 Since the population

of workers is L, workers’ total consumption Cw
t is given by

Cw
t = wtL. (6)

2.3 Production

The representative firm produces general goods from capital and labor with produc-

tion technology: Yt = F (Kt, Nt), where Yt is the total output. Kt and Nt are capital

and labor inputs, respectively, where capital depreciates entirely in one period. Let

us assume that F (Kt, Nt) is standard neoclassical technology—continuous, constant

returns to scale with respect toKt andNt and positive and diminishing marginal prod-

uct with respect to both inputs. Additionally, F (0, Nt) = F (Kt, 0) = 0 holds. Let us

define per worker capital by kt := Kt/Nt. Then, it follows that f ′′(kt) < 0 < f ′(kt)

and f(0) = 0, where f(kt) := F (kt, 1). The capital and labor markets are competi-

tive. Therefore, we obtain the following conditions from the firm’s profit maximization

problem:

rt = f ′(kt) (7)

and

wt = f(kt)− f ′(kt)kt. (8)

4The empirical evidence obtained by King and Leape (1998) and Guiso et al. (2003) strongly
supports the existence of hand-to-mouth consumers.
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3 Equilibrium dynamics

The competitive equilibrium is defined as trajectories of quantities {ct, at, θt, Kt, C
w
t , Nt, Yt}

and prices {rt, wt}, such that (i) the representative capitalist solves the lifetime util-

ity maximization problem so that Eqs. (4) and (5) hold, (ii) the representative firm

solves the profit maximization problem so that Eqs. (7) and (8) hold, (iii) the repre-

sentative worker consumes the wage income entirely in each period so that Eq. (6)

holds, and (iv) all markets clear.

From the labor and capital market clearing conditions, it follows that L = Nt and

at = Kt. Therefore, from Eqs. (4), (5), (7), and at = Kt = ktL, the dynamical system

with respect to (kt, θt) is characterized by

kt+1 = (1− θt)f
′(kt)kt =: Γ(kt, θt) (9)

and

θt+1 =
β

1
γ f ′(Γ(kt, θt))

1
γ
−1

1− θt
θt =: H(kt, θt). (10)

With the initial condition k0 > 0 given, Eqs. (9) and (10) obtain equilibrium se-

quences {kt+1, θt}∞t=0, where (kt, θt) ∈ [0,∞) × [0, 1] for all t. When γ = 1, the

transversality condition (3) has the above two dynamic equations reduced to a single

dynamic equation, kt+1 = βf ′(kt)kt.

3.1 Steady state

Define (k, θ) as the steady-state values of kt and θt. Then, from Eqs.(9) and (10), we

have

βf ′(k) = 1, (11)

and

θ = 1− β.

To ensure the existence of the steady state, we impose the following assumption:

Assumption 1. limkt→∞ f ′(kt) < 1/β < limkt→0 f
′(kt).

Assumption 1 and f ′′(kt) < 0 guarantee the existence and uniqueness of the steady-

state value of k.
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3.2 Local dynamics

Linearizing Eqs. (9) and (10) around the steady state (k, θ) yields the local dynamical

system as follows:(
kt+1 − k

θt+1 − θ

)

=

 1− η(k) − k
β

−(1− β)( 1
γ
− 1) (1− η(k)) η(k)

k
1
β

(
1 + (1− β)( 1

γ
− 1)η(k)

) ( kt − k

θt − θ

)
,

(12)

where η(k) := −f ′′(k)k/f ′(k) > 0 is an elasticity of the marginal product of capital

in the steady state. Then, it follows from Eq.(11) that η(k) = −βf ′′(k)k. Therefore,

the value of η(k) depends on not only the configuration of the production function

but also the capitalist’s subjective discount factor β. Eq.(11) can rewrite η(k) as a

function of β, but we use η(k) throughout the analysis for convenience.

Let λ1 and λ2(< λ1) be the eigenvalues of the Jacobian matrix in Eq. (12). Then,

λ1 and λ2 are solutions of the characteristic equation given by

Ξ(λ) := λ2 − Tλ+D = 0, (13)

where T and D are the trace and determinant, respectively, of the Jacobian matrix,

where

T := 1− η(k) +
1

β

(
1 + (1− β)

(
1

γ
− 1

)
η(k)

)
(14)

and

D :=
1− η(k)

β
. (15)

Lemma 1. Both λ1 and λ2 are real valued. Furthermore, it holds that λ2 < 1 < λ1.

Proof. The claim of Lemma 1 follows from Ξ(1) = −(1− β)η(k)/(βγ) < 0.

Lemma 1 implies that the local stability of the steady state of the dynamical

system depends on whether the value of λ2 is less than −1.

Proposition 1. The steady state of the dynamical system given by Eqs. (9) and (10)

exhibits the following properties:
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(i) If 1 + β + [(1− β)/(2γ)− 1]η(k) > 0, the steady state (k, θ) is a saddle point.

(ii) If 1 + β + [(1− β)/(2γ)− 1]η(k) < 0, the steady state (k, θ) is unstable.

Proof. From Eqs. (13)-(15), we have Ξ(−1) = (2/β)[1+ β + {(1− β)/(2γ)− 1}η(k)].
If Ξ(−1) > (<)0, it follows that −1 < λ2 < 1 (λ2 < −1). Then, the claims of

Proposition 1 hold.

When γ = 1 (log preferences), the condition for the steady state to be unstable is

η(k) > 2. Woodford (1989) and Hashimoto et al. (2022) investigate this case and

derive endogenous business cycles.

3.3 Local stability

The combination of η(k) and γ determines the local stability of the steady state, with

their values being independent of one another. Remark 1 below, which immediately

follows from Proposition 1, is helpful for understanding what value of λ2 is obtained

under what conditions.

Remark 1. Define Ω := γ(1 + β)/[γ − (1− β)/2]. Then, the following hold:

(i) If 0 < η(k) < 1 holds, the first claim of Proposition 1 holds (i.e., the steady

state (k, θ) is a saddle point). In this case, it follows that Ξ(0) = D > 0, and

thus, 0 < λ2 < 1.

(ii) If γ ≤ (1 − β)/2, the first claim of Proposition 1 holds, regardless of the value

of η(k) (i.e., the steady state (k, θ) is a saddle point), but in particular, if

η(k) > 1 under the same condition, it follows that Ξ(0) < 0 < Ξ(−1), and thus,

−1 < λ2 < 0.

(iii) If γ > (1 − β)/2 and 1 < η(k) < Ω, the first claim of Proposition 1 holds

(i.e., the steady state (k, θ) is a saddle point). In this case, it follows that

Ξ(0) < 0 < Ξ(−1), and thus, −1 < λ2 < 0.

(iv) If γ > (1 − β)/2 and Ω < η(k) < ∞, the second claim of Proposition 1 holds

(i.e., the steady state, (k, θ), is unstable). In this case, it follows that λ2 < −1.
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Regardless of the stability of the steady state, equilibrium in this economy is on a

one-dimensional invariant manifold that is nonlinear globally but associated with λ2

in the vicinity of the steady state (henceforth referred to as “equilibrium manifold”

unless stated otherwise). The reason for this is the transversality condition, which

degenerates the effect of λ1 > 1 by letting θ0 on it with k0 given. In particular, if the

steady state is a saddle point, equilibrium is uniquely determined on the saddle path

and converges to the steady state. If the production technology is of the Cobb-Douglas

type, we have 0 < η(k) < 1. Then, Remark 1-(i) implies that the Cobb-Douglas

production technology shapes the steady state into a saddle point. If −1 < λ2 < 0

holds as in Remarks 1-(ii) and (iii), the equilibrium converges to the steady state

while oscillating over the steady state. If the steady state is unstable, as shown in

Remark 1-(iv), endogenous business cycles can occur in equilibrium. We elaborate

on this point in the numerical analysis in section 4.

In the cases of Remarks 1-(ii), (iii), and (iv), the equilibrium oscillates, sliding

over the steady state because λ2 < 0, regardless of the convergence property of

the equilibrium. The intuition behind why the equilibrium oscillates is as follows.

Capitalists’ income is f ′(kt)kt, and they accumulate capital by using part of their

income. Whether capitalists’ income increases or decreases with capital stock kt

depends on the level of capital stock. An increase in the amount of capital has two

conflicting effects on capital income. The increase in kt directly increases the source of

capital income, which is kt, but the increased capital decreases the marginal product

of capital, rt = f ′(kt), which places reducing pressure on capital income. The latter

negative effects dominate the former positive effects if η(kt) > 1 holds because

d[f ′(kt)kt]

dkt
= (1− η(kt)) f

′(kt) < 0 if η(kt) > 1. (16)

Consider the vicinity of the steady state. Eq.(16) implies that increased (decreased)

capital causes lower (higher) capital income when η(k) > 1. The low (high) level

of capital income means that capitalists accumulate less (more) capital in the next

period, which yields oscillations around the steady state. When the coefficient of

relative risk aversion is sufficiently large, λ2 decreases (i.e., the absolute value of

λ2 becomes greater) as η(k) becomes large. The reason for this is that if the co-

efficient of relative risk aversion is sufficiently large, consumption smoothing works

11



sufficiently, and accordingly, the consumption-to-capital-income ratio becomes large

(small) when capital income changes to a low (high) level. The increased (decreased)

consumption-to-capital-income ratio increases the negative (positive) impact of de-

creased (increased) capital income on capital accumulation. As such, if η(k) becomes

large, with the coefficient of relative risk aversion being sufficiently large, then the am-

plification of capital oscillations becomes larger. Eventually, when η(k) is sufficiently

high such that 1 < Ω < η(k), the steady state becomes unstable, and endogenous

business fluctuations can occur.

3.4 Flip bifurcation with respect to γ

Since the value of γ has no effect on η(k), in turn, Proposition 1 implies that when

η(k) is sufficiently large, the size of γ alters the stability of the steady state. More

concretely, Remark 2 below immediately follows from Proposition 1.

Remark 2. Define γ̄ := (1−β)/ [2{1− (1 + β)/η(k)}] and suppose that η(k) > 1+β.

Then, the following hold:

(i) If 0 < γ < γ̄, the steady state is a saddle point.

(ii) If γ̄ < γ, the steady state is unstable.

We clarify that since η(k) > 1 + β, it follows that Ξ(0) < 0. Therefore, the value of

λ2 is −1 < λ2 < 0 if the condition of Remark 2-(i) holds or λ2 < −1 if the condition

of Remark 2-(ii) holds. In particular, if γ = γ̄, we have λ2 = −1.

Our interest is in the effect of γ, which is the degree of relative risk aversion, on

the dynamic property in equilibrium. Again, equilibrium is on the invariant manifold

that is nonlinear globally but associated with λ2 in the vicinity of the steady state.

Although it is difficult to investigate equilibrium on the equilibrium manifold ana-

lytically because it is nonlinear globally, we can analyze the local dynamics. More

concretely, from Eqs.(9) and (10) and the transversality condition, we are certain that

there is a policy function, θt = θ(kt), which is assumed to be differentiable at least

three times. The policy function θ(kt) lets the economy on the equilibrium manifold.

Inserting this function into Eq.(9) yields

kt+1 = (1− θ(kt))f
′(kt)kt =: Γ̃(kt; γ), (17)

12



where kt+1 is a function of kt, which displays the equilibrium manifold. The config-

uration of the right-hand side of Eq. (17) is affected by γ, which is our parameter

of interest, with other parameters (including the characteristics of the production

function) remaining unchanged. The linearization of Eq.(17) around the steady state

is given by

kt+1 − k =
∂Γ̃(k; γ)

∂kt
(kt − k),

where ∂Γ̃(k; γ)/∂k = λ2(k; γ). Let us define Γ̃2 = Γ̃ ◦ Γ̃. We consider a supercritical

flip bifurcation with respect to γ that occurs at γ = γ̄, in which (i) if 0 < γ < γ̄, the

dynamical system given by Eq.(17) has a unique steady state that is asymptotically

stable and (ii) if γ̄ < γ, the dynamical system has an unstable steady state and a

period-two cycle exists in the neighborhood of the steady state, which is asymptot-

ically stable. Because λ2(k; γ̄) = −1, the two other conditions for a supercritical

flip bifurcation to occur are ∂λ2(k; γ̄)/∂γ < 0 and ∂3Γ̃2(k; γ̄)/∂k3 < 0 (Grandmont,

2008). Then, it follows from Eqs. (13), (14), and (15) that

∂λ2(k; γ)

∂γ
=

1

2

(
1− T√

T 2 − 4D

)(
∂T

∂γ

)
. (18)

The inside of the first parentheses on the right-hand side of Eq.(18) is positive, and

∂T/∂γ is negative. Hence, it holds that ∂λ2(k; γ̄)/∂γ < 0.

It is difficult to directly investigate whether ∂3Γ̃2(k; γ̄)/∂k3 < 0 holds. The reason

for this is that the sign of ∂3Γ̃2(k; γ̄)/∂k3 depends on not only the explicit parameter

values but also the configuration of the production function. Even though we specify

the production function, analyzing the sign of ∂3Γ̃2(k; γ̄)/∂k3 is still complicated

because it requires us to compute ∂3Γ̃2(k; γ̄)/∂k3 in the steady state of the dynamical

system given by Eq. (17), while Γ̃2 is the twice iteration of the dynamical system.

In the next section, we employ a more specific strategy to verify the presence of a

stable period-two cycle. Concretely, we first identify a stationary period-two cycle by

using the dynamical system given by Eqs. (9) and (10), and then, we numerically

confirm that the period-two cycle is stable by investigating the local stability of

the twice-iterated dynamical system around the stationary period-two cycle with

constant-elasticity-of-substitution (CES) technology and plausible parameter values.

13



4 Period-two cycles

Suppose that the dynamical system given by Eqs.(9) and (10) has a stationary period-

two solution, denoted by {(ka, θa), (kb, θb)}. According to Eqs. (9) and (10), these

variables satisfy

ka = Γ(kb, θb), θa = H(kb, θb)

kb = Γ(ka, θa), θb = H(ka, θa).

From Eq. (9), we have θt = 1 − kt+1/(f
′(kt)kt). By substituting this into Eq. (10)

and rearranging it, we obtain

kt+2 = f ′(kt+1)kt+1 − β
1
γ f ′(kt+1)

1
γ (f ′(kt)kt − kt+1) . (19)

Substituting kt+2 = kt = ka and kt+3 = kt+1 = kb into Eq.(19) yields the following

two equations that determine the period-two solution:

ka = f ′(kb)kb − β
1
γ f ′(kb)

1
γ (f ′(ka)ka − kb) (20)

kb = f ′(ka)ka − β
1
γ f ′(ka)

1
γ (f ′(kb)kb − ka) . (21)

If ka and kb are well defined, we have θa and θb, respectively, as follows:

θa = 1− kb
f ′(ka)ka

(22)

θb = 1− ka
f ′(kb)kb

. (23)

4.1 Parameterization

To make the analysis as lucid as possible, we assume that the economy is endowed with

the CES production function such that Yt = A
(
(1− α)K−σ

t + αN−σ
t

)− 1
σ with α ∈

(0, 1) and σ ∈ (0,∞), where A is the total factor productivity (TFP). Then, it follows

that f(kt) = A((1−α)k−σ
t +α)−

1
σ . In the Appendix, we verify the existence of k and

η(k) under the assumption that A(1− α)−1/σ > 1/β. We base our parameterization

on Remark 2. Following standard RBC theory, we set β = 0.96 and α = 0.67.

By conducting a meta-analysis with 3,186 observations in total of the elasticity of

14



Table 1: Parameter values

Parameter Value Source/Target

Subjective discount factor β = 0.96 RBC literature

Labor share when σ → 0 α = 0.67 RBC literature

Elasticity of substitution between capital and labor σ = 2.33 (1/(1 + σ) = 0.3) Gechert et al. (2022)

TFP A = 2.5 based on Remark 2

substitution between capital and labor obtained from 121 prior studies, Gechert et

al. (2022) report that the mean elasticity of substitution should be 0.3. Then, we

examine the case in which the elasticity of substitution is equal to 1/(1 + σ) = 0.3,

which solves approximately σ = 2.33. In Remark 2, we assume that η(k) > 1 + β.

Accordingly, the lower limit of A is approximately 2.303; thus, we employ A = 2.5.

Under the CES production function with the assumption that η(k) > 1 + β, we can

numerically verify that ka, kb, θa, and θb are well defined by Eqs. (20)-(23) and unique.

Table 1 summarizes the parameter values that we employ.

We display the relationship between A and γ̄ in Figure 2, which indicates a neg-

ative relationship between the two. More concretely, as A approaches 2.303 from

above, γ̄ goes to infinity, and as A goes to infinity, it converges to approximately

0.0486. Thus, Remark 2 implies that as A becomes large, the steady state is more

likely to be unstable with the range of γ that produces the unstable steady state

widening.

4.2 Local stability of the period-two cycle

Eqs. (9) and (10) yield the twice-iterated dynamical system as follows:

kt+1 = Γ(Γ(kt−1, θt−1), H(kt−1, θt−1)) (24)

and

θt+1 = H(Γ(kt−1, θt−1), H(kt−1, θt−1)). (25)

By linearizing Eqs. (24) and (25) around (kj, θj), we have(
kt+1 − kj

θt+1 − θj

)
=

(
Γi
k Γi

θ

H i
k H i

θ

)(
Γj
k Γj

θ

Hj
k Hj

θ

)(
kt−1 − kj

θt−1 − θj

)
,
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Figure 2: A versus γ̄ (likelihood of the occurrence of an unstable steady state)

Notes. As A approaches 2.303 from above, γ̄ goes to infinity, and as A goes to
infinity, γ̄ converges approximately to 0.0486. Then, Remark 2 implies that as A
becomes large, the steady state is more likely to be unstable with the range of γ that
produces the unstable steady state widening.

where (i, j) = (a, b) or (b, a), Γi
k = ∂Γ(ki, θi)/∂k, Γ

i
θ = ∂Γ(ki, θi)/∂θ,H

i
k = ∂H(ki, θi)/∂k,

and H i
θ = ∂H(ki, θi)/∂θ.

The stability of the period-two cycle depends on the product of two matrices:

J̃ :=

(
Γi
k Γi

θ

H i
k H i

θ

)(
Γj
k Γj

θ

H i
k Hj

θ

)
.

Let λ̃1 and λ̃2(< λ̃1) be eigenvalues of J̃ . Under our parameter setting with the CES

production function but varying the value of γ, we numerically obtain the eigenvalues

such that 0 < λ̃2 < 1 < λ̃1 when γ > γ̄, as shown in Figure 3. As γ increases from

γ̄, both λ̃1 and λ̃2 decrease, and λ̃1 and λ̃2 converge to 1 and 0.7 as γ increases,

respectively. If the period-two solution {(ka, θa), (kb, θb)} is well defined, it is on the

equilibrium manifold. Otherwise, the stationary period-two cycle cannot be station-

ary because one of the eigenvalues of the dynamical system of Eqs.(9) and (10) is

16



Figure 3: Eigenvalues of the twice-iterated dynamical system (γ > γ̄)

𝛾

𝜆ሚଵ

Figure3

𝜆ሚଶ

Notes. As γ increases from γ̄, both λ̃1 and λ̃2 decrease, and λ̃1 and λ̃2 converge to 1
and 0.7 as γ becomes big, respectively.

greater than 1; i.e., λ1 > 1. In terms of the twice-iterated dynamical system given by

(24) and (25), equilibrium is on the equilibrium manifold that is nonlinear globally

but associated with λ̃2 in the vicinity of the stationary period-two solution so that

the transversality condition should hold. As such, the stationary period-two solution

is stable under our parameter setting with the CES production function. By inserting

the policy function θt−1 = θ(kt−1) into Eq. (24), we obtain

kt+1 = Γ(Γ(kt−1, θ(kt−1)), H(kt−1, θ(kt−1))) =: Ψ(kt−1).

Moreover, we perform twice iterations of Γ̃ in Eq. (17) as follows:

kt+1 = Γ̃(Γ̃(kt−1; γ); γ) =: Ψ̃(kt−1; γ).

The two functions Ψ and Ψ̃ should be identical.
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In the Appendix, we perform two numerical exercises under our parameter setting—

one aims to investigate an equilibrium path via Brunner and Strulik’s (2004) method,

and the other aims to produce bifurcation diagrams for macroeconomic variables when

varying γ. The first exercise finds equilibrium paths of kt and θt. To compare two

typical situations, we employ two values—γ = 0.2 and = 2. When γ = 0.2, kt and

θt monotonically converge to the steady state, and when γ = 2, they converge to the

stationary period-two cycle. Notably, 32 out of 38 countries have a degree of relative

risk aversion greater than 2 in the empirical observation in the introduction. In the

second exercise, we produce bifurcation diagrams of capital stock, output, and the

consumption levels of workers’ and capitalists’. We find that the amplitude of the

period-two cycles becomes wider as γ increases, except for the case of capitalists’ total

consumption. The amplitude of capitalists’ total consumption first expands and then

begins to shrink as γ increases.

5 Conclusion

One of the crucial theoretical insights from modern macroeconomic theory is that a

higher degree of relative risk aversion promotes consumption smoothing and mitigates

the economic volatility caused by exogenous shocks. In contrast to this conventional

wisdom, our simple dynamic general equilibrium model has shown that a higher degree

of relative risk aversion combined with a higher degree of elasticity of the marginal

product of capital can destabilize economies, producing a nonlinear mechanism that

causes endogenous business fluctuations. Our simple macroeconomic model suggests

that one cannot identify the cause of business fluctuations if only the propagation

of exogenous shocks is investigated, as has been done in traditional RBC theory.

To understand boom-bust cycles deeply, researchers should merge exogenous and

endogenous business fluctuations when investigating economies.
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Appendix A: Empirical observations

Estimation equation

The specification of the estimation equation is based on the Euler equation. Let

us consider Eq. (2) in section 2, which is a typical Euler equation of macroeconomic

models. If this equation is subject to exogenous shocks associated with production, an

expectation operator given the information until period t accompanies this equation

such that

1 = Et

[(
cit
cit+1

)γi

βrit+1

]
, (A1)

where i denotes the country. Then, it follows from Eq.(A1) that

ϵit+1 =

(
cit
cit+1

)γi

βrit+1,

or equivalently,

cit+1

cit
=

(
βrit+1

ϵit+1

) 1
γi

, (A2)

where rit+1 and ϵit+1 are stochastic variables with Et[ϵ
i
t+1] = 1. Taking the logarithm

of both sides of Eq. (A2) yields

log

(
cit+1

cit

)
=

1

γi

[
log(β) + log(rit+1)− log(ϵit+1)

]
. (A3)

From the linear approximation of both sides of Eq.(A3) around cit+1/c
i
t = rit+1 =

ϵit+1 = 1, we have
cit+1 − cit

cit
≈ 1

γi

[
log(β) + rit+1 − ϵit+1

]
. (A4)

Now, we assume that ϵit+1 is a function such that ϵit+1 := g(rit+1) + ϵ̃it+1, where g(·)
is a differentiable function and rit+1 and ϵ̃it+1 are independent. Since the linear ap-

proximation of g(rit+1) around rit+1 = 1 is given by g(rit+1) ≈ g(1) + g′(1)(rit+1 − 1), it
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follows that

ϵit+1 ≈ g(1)− g′(1) + g′(1)rit+1 + ϵ̃it+1. (A5)

Substituting Eq. (A5) into Eq.(A4) yields

cit+1 − cit
cit

≈ 1

γi

[
log(β) + g′(1)− g(1) + (1− g′(1))rit+1 − ϵ̃it+1

]
. (A6)

Taking the variances of both sides of Eq.(A6), it follows that

V ar

(
cit+1 − cit

cit

)
=

Φ̄V ar(rit+1) + Φ

γ2
i

, (A7)

where V ar(·) represents the variance, Φ̄ := (1−g′(1))2, and Φ := V ar(ϵ̃it+1). Note that

Φ is assumed to be constant across countries. Furthermore, from the log-linearization

of log(Φ̄V ar(rit+1) + Φ) around the country-mean of V ar(rit+1), we have

log(Φ̄V ar(rit+1) + Φ) = log(Φ̄V ar(rit+1) + Φ)

+

(
Φ̄V ar(rit+1)

Φ̄V ar(rit+1) + Φ

)
[log(V ar(rit+1))− log(V ar(rit+1))], (A8)

where V ar(rit+1) is the country mean of V ar(rit+1). Taking the logarithm of both

sides of Eq. (A7) and using Eq. (A8) yield

log

(
V ar

(
cit+1 − cit

cit

))
= Φ̃ +

(
Φ̄V ar(rit+1)

Φ̄V ar(rit+1) + Φ

)
log(V ar(rit+1))− log(γ2

i ), (A9)

where Φ̃ := log(Φ̄V ar(rit+1) + Φ)− Φ̄V ar(rit+1) log(V ar(rit+1))/(Φ̄V ar(rit+1) + Φ) is a

constant. Eq. (A9) is the basis of the estimation equation.

Data

We draw the data for the EIS from Table A1 of Havranek et al. (2015). In the

process of the meta-analysis, Havranek et al. (2015) collect 2735 estimates of the

EIS from published studies and display the means of the EIS country by country for

45 countries, excluding estimates larger than 10 in absolute value, in Table A1 of

their paper. We omit 5 countries that have negative EIS means, thereby obtaining
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40 EIS data points from the abovementioned table. From the EIS data collected,

we compute the squared degree of relative risk aversion to obtain log(γ2
i ). To obtain

per capita consumption growth, we use real consumption at constant 2017 national

prices (rconna) and population (pop) assembled from Penn World Table, version 10.01

(PWT 10.01, Feenstra et al., 2015) for the period 1950-2019 at maximum depending

on each country’s availability. We also collect the real internal rate of return (irr) for

the period 1950-2019 from Penn World Table, version 10.01. We then take the sample

variances of per capita consumption and the real internal rate of return to obtain

log(vaci) and log(vaii), respectively. The real internal rate of return for Myanmar

and Pakistan is not available; therefore, the sample size for the estimation is 38.

Appendix B: Steady state with the CES production function

The output per capita under the CES production function given in section 3 is f(kt) =

A((1 − α)k−σ
t + α)−1/σ. Then, it follows that f ′(kt) = A(1 − α)/[1 − α + αkσ

t ]
1+1/σ.

Furthermore, we have limkt→0 f
′(kt) = A(1 − α)−1/σ and limkt→∞ f ′(kt) = 0 for

σ ∈ (0,∞). Under the parameter assumption, A(1 − α)−1/σ > 1/β, which satis-

fies Assumption 1, the steady state k exists, and from Eq. (11), the steady-state

value of kt is given by the following equation:

αkσ = (βA(1− α))
σ

1+σ − (1− α).

The elasticity of marginal product η(kt) := −f ′′(kt)kt/f
′(kt) is obtained as

η(kt) = (1 + σ)
αkσ

t

αkσ
t + 1− α

.

Appendix C: Equilibrium path

To find an equilibrium path, we employ Brunner and Strulik’s (2002) method. Fol-

lowing their approach, we perform backward iterations of the dynamical system of

Eqs.(9) and (10) from the vicinity of the steady state when the steady state is a saddle

point or from the vicinity of the stationary period-two solution if the steady state is

unstable. The crucial point of the abovementioned method is that when starting from

the vicinity of the steady state or the stationary period-two solution, the backward
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Figure C1: Time course of kt and θt in equilibrium

Figure 2: Time path of 𝑘௧ and 𝜃௧

𝑘௧
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𝛾 ൌ 0.2 

𝑘௧

𝛾 ൌ 2 

𝜃௧

𝛾 ൌ 0.2 

𝛾 ൌ 2 

Notes. We produce an equilibrium path for 20 periods. When γ = 0.2, kt and θt
converge to the steady state (left panels) and when γ = 2, they converge to the
stationary period-two cycle (right panels).

iteration tends toward the direction of the eigenvector associated with λ2 or λ̃2. Then,

we can obtain the economy approximately on the equilibrium manifold embodied by

Eq. (17).

Under our parameter setting, σ = 2.33 computes η(k) ≈ 2.04 > 1+β and γ̄ ≈ 0.53.

Therefore, from Remark 2, the steady state is a saddle point when γ = 0.2 and is

unstable when γ = 2. Brunner and Strulik’s method finds equilibrium paths of kt

and θt when γ = 0.2 and 2, respectively. As observed in Figure C1, when γ = 0.2, kt

and θt converge to the steady state (left panels), and when γ = 2, they converge to

the stationary period-two cycle (right panels).

Appendix D: Bifurcation diagram

Let us produce bifurcation diagrams by varying γ from 0.2 to 3.0 for macroeconomic

variables such as total output, capital, workers’ total consumption, and capitalists’

total consumption. We assume that L = 100. The way to produce these diagrams

is different than usual. Whereas one usually iterates the dynamical system forward
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many times and finds the convergence or nonconvergence terminal, we cannot employ

such an ordinary method in our study. The reason for this is that we must analyze

the equilibrium dynamics on the equilibrium manifold that we cannot analytically

derive. Nevertheless, our analytical investigation thus far has sufficient information

to produce bifurcation diagrams. Focusing on the case in which γ(k) > 1+β, we find

from Remark 2 and the numerical analysis of the stability of the period-two solution

that when γ increases from 0.2, a supercritical flip bifurcation occurs at γ = γ̄ and the

stable period-two cycle appears, which means that there are no more period-doubling

bifurcations as γ increases under our parameter setting (see Figure 3).

Figure D1 provides the bifurcation diagrams. In each panel, the horizontal line

is γ, and the vertical line is the macroeconomic variable. As expected, all panels in

Figure 5 show that bifurcation occurs at γ = γ̄ and endogenous business fluctuations

(period-two cycles) appear. The amplitude of these period-two cycles becomes wider

as γ increases, except for the case of capitalists’ total consumption, in which the

amplitude first expands and then shrinks as γ increases from γ̄ to 3.0.

Compared with standard RBC theory, we obtain some takeaways from analyzing

the bifurcation diagrams. First, despite our simple model setting such that workers

are hand-to-mouth consumers, capitalists are endowed with the CRRA utility func-

tion, and the representative firm employs the CES production technology, the larger

(but plausible) coefficient of relative risk aversion produces the nonlinearity of equi-

librium, causing endogenous business fluctuations. Standard RBC theory has ignored

this mechanism; according to this theory, the origin of business cycles is only exoge-

nous productivity shocks. Second, as the coefficient of relative risk aversion becomes

large, the amplitude of macroeconomic variables widens in our model. This outcome

has never been considered in standard RBC theory. In particular, in standard RBC

theory, it is more likely that the amplitude of consumption fluctuations caused by ex-

ogenous productivity shocks shrinks as the coefficient of relative risk aversion becomes

larger due to consumption smoothing. In contrast, the amplitude of consumption in

our model becomes larger as the coefficient of relative risk aversion increases beyond

the critical value of γ̄, although the amplitude of capitalists’ consumption starts to

shrink when the coefficient of relative risk becomes too large because the effect of

consumption smoothing surpasses the nonlinear effect that causes endogenous busi-
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Figure D1: Bifurcation diagrams for macroeconomic variables when γ varies from
0.2 to 3
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Notes. In each panel, bifurcation occurs at γ = γ̄ and endogenous business fluctu-
ations (period-two cycles) appear. The amplitude of the period-two cycles becomes
wider as γ increases, except for the case of capitalists’ total consumption, in which
the amplitude first expands and then shrinks as γ increases from γ̄ to 3.0.

ness fluctuations. Third, the outcome of our study proposes an empirical research

question regarding whether the economy is more likely to fluctuate as the coefficient

of relative risk aversion increases. Although we provide a preliminary result of such

an empirical study in the introduction, further investigations are necessary.
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