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Increases in the price-to-dividend ratio (PDR) have been observed during bubble pe-

riods. However, in the 2010s, asset prices have surged to bubble-era levels without a

rise in the PDR. Based on this observation, we construct a macroeconomic model in

which asset prices can be high or low under a constant PDR. In both equilibria, asset

prices are entirely determined by the sum of expected future dividends and influence

macroeconomic performance. The high asset price stimulates capital accumulation.
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1 Introduction

According the theory of rational bubbles, increases in stock prices are accompanied by an

increase in the price-to-dividend ratio (PDR).1 This theory is consistent with the past several

episodes of asset price appreciation. During the asset bubble period in Japan, real stock prices

and the PDR increased dramatically by 167% and 137%, respectively, from 1985 to 1989 (see

the blue and orange lines in the gray area of Figure 1).2 Similarly, in the U.S., stock prices

and the PDR increased by 179% and 148%, respectively, from 1994 (just before the U.S. IT

bubble began) to 1999 (see the blue and orange lines in the gray area of Figure 2).3 The

movement of the price-earnings-ratio (PER) is similar to that of the PDR (see appendix B).

However, the stock price increases during certain periods in Japan and the U.S., which are

comparable to those in bubble periods, may not be consistent with rational bubble theory.

In Japan, although stock prices increased by 203% between 2011 and 2023, the PDR only

grew by 4.97% (see the blue and orange lines since 2011 in Figure 1).4 Similarly in the U.S.,

the stock prices have been increasing significantly since 2009 (see Figure 2). In 2014, they

eventually had surpassed the level of the IT bubble in 1999. However, the PDR didn’t rise

as much. During this period, while the stock prices increased by 140%, the PDR increase by

only 10%. The stock price increases around 2020 were once again accompanied by that in

the PDR. However, even extending the period to 2021 when the PDR temporarily increased,

stock prices rose by 223%, while the PDR increased by only 56%. These stock price increases

with the stable PDR may be inconsistent with rational bubble theory.
1See Appendix A for a more detail discussion.
2For Japanese data, nominal stock prices were obtained from the TOPIX, price indexes were obtained

from the Consumer Price Index (National Composite), and average yields on the TSE First Section and
Prime Market (dividend-paying companies) were taken from NIKKEI NEEDS-Financial QUEST. The CPI
was seasonally adjusted using data from January 1980 to March 2024. Seasonal adjustment was used based
on the assumption that there was a level change in the month in which the consumption tax was introduced
and the month in which the consumption tax rate was raised. Real stock prices were calculated by dividing
the TOPIX by the seasonally adjusted CPI, and the PDR was the inverse of the average yield. The average
yield uses data from the TSE First Section until 2021, and data from the TSE Prime market after 2022. As
in the U.S., real stock prices and the PDR at the end of each year are used as the real stock prices and the
PDR for each year.

3For U.S. data, real S&P 500 stock price and real dividend data were obtained from the Schiller website,
and TFP was obtained from The Penn World Table version 10.01. Since Schiller’s data are monthly, the real
S &P 500 stock price and real dividend in December of each year are used as the real S&P 500 stock price
and real dividend for each year.

4Despite the significant rise in Japanese stock prices since 2011, the PDR has remained relatively stable,
staying around 50. Even at its highest point in 2017, it was only about 69.
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If an increase in asset prices is not a rational bubble, how can it be explained? Part of the

rise in asset prices could be explained by productivity growth. The red line in Figure 1 shows

the total factor productivity (TFP) in the Japan. The TFP growth is positive, however, it is

quite gradual compared to the rise in stock prices. Indeed, the TFP increased by only 3.95%

since 2011. Economic growth alone seems insufficient to explain the accelerated rise in stock

prices since 2011. The TFP growth in the U.S. was also modest (see Figure 2). It increased

by 5.76% from 2009 to 2019.5

Based on these observations, this study explores a theoretical explanation for whether

asset prices can increase significantly even if the PDR remains constant and TFP growth is

absent.6 Moreover, we investigate the impacts of high asset prices on the economy and derive

theoretical implications for asset pricing in an economy with a constant PDR.

Our model is based on the standard neoclassical economy with TFP normalized to one.

There is no heterogeneity among economic agents. Households own firms as an asset. Thus,

the market value of the firms represents the asset price in our model. The firms produce a

single final good by using capital and labor. We introduce a timing mismatch between the

payment for factor inputs and revenue from production. To deal with the timing mismatch,

firms make a credit purchase contract. Credit constraints are then endogenously derived by

an incentive-compatibility constraint of the firms. Due to the endogenous credit constraints,

each firm’s investment in capital is limited by a fraction of its market value.

This study yields the following five results that seem contradictory but are actually con-

sistent with each other. First, the endogenous credit constraints yield multiple steady-state

equilibria with high and low asset prices. Thus, our model exhibits a global indeterminacy.

Second, the high stock price encourages capital accumulation. Third, in both equilibria with

high and low asset prices, the asset price is entirely determined by the fundamental values,

which is defined as the summation of the expected future dividends (or equivalently, firm’s

profits) stream. Fourth, the two steady states with different asset prices share the same PDR

and TFP. Finally, even if high asset prices are not accompanied by a high PDR, the econ-

omy may still experience a sudden crash in asset prices. These results provide a theoretical
5During 1985-1989, the TFP in Japan increased by 6.3%. In the U.S., the TFP increased by 4% from

1994 to 1999.
6As long as the growth rate of TFP is constant, all of results in this study are unaffected.
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foundation for the recent rises and crashes in stock prices without an increasing PDR.

The intuitions behind our results are as follows: The credit constraints create a positive

feedback mechanism between asset prices and individual firms’ investment. Suppose that the

future profitability of a firm is expected to increase, which is reflected by an increase in the

market value of the firm. The increased market value loosens the credit constraint and hence

promotes the firms’ investment. The increased investment leads to the actual increase in the

future profits of the firm. Then, the (present) market value of the firm actually increases.

The initial optimistic expectation about the future profitability is self-fulfilling. Thus, the

equilibrium with high asset prices arises even if there are no fundamental changes such as

technological changes.

We emphasize that the asset price appreciation in our model is not caused by speculation.

Because no heterogeneity is included in our model, asset resale is excluded. Indeed, the asset

price is determined by the discounted value of the future dividend stream. Our results suggest

that even without changes in the PDR, asset prices could rise and fall significantly depending

on the expectations about the future dividends (profits) stream and the rise and fall can have

a significant impact on capital accumulation and macroeconomic performance. Since even

the fundamental term of the firm value can vary depending on the expectations, we call it

bubbly fundamental.

Related literature: Since the seminal contributions of Bernanke and Gertler (1989) and Kiy-

otaki and Moore (1997), many macroeconomic models have emphasized the importance of

credit constraints. In the presence of credit constraints, relaxing them expands investment

and production. This financial accelerator mechanism amplifies the effects of a fundamen-

tal shock such as a TFP shock, leading to significant macroeconomic fluctuations. In our

model, without fundamental shocks, the feedback mechanism between asset prices and credit

constraints is triggered by the self-fulfilling expectation.

The fact that the presence of credit constraints may be the source of equilibrium indeter-

minacy and self-fulfilling business cycles is not new. Examples include Benhabib and Wang

(2013), Liu and Wang (2014), and Azariadis et al. (2016).7 Assuming that the borrowing
7The seminal paper of Benhabib and Farmer (1994) show that an one-sector RBC model with increasing

returns to scale can lead to indeterminacy of equilibria. Liu and Wang (2014) model with heterogeneous
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capacity of firms depends on their output, Benhabib and Wang (2013) show that endogenous

markups generate indeterminacy and self-fulfilling equilibria. In Liu and Wang (2014) and

Azariadis et al.(2016), credit constraints affect the allocation of productive resources among

heterogeneous firms and the aggregate productivity, which generates aggregate increasing

returns and causes equilibrium indeterminacy. Unlike our study, none of these studies pay

attention to the relationship between asset prices and the PDR.

Moreover, the source of indeterminacy in our model is different from these studies. Unlike

Benhabib and Wang (2013), the credit limits of firms do not depend on their output. Unlike

Liu and Wang (2014) and Azariadis et al.(2016), there is no heterogeneity in productivity.

In our model, the expectation about future profitability of firms is self-fulfilling, which is the

souce of indeterminacy.

Our work is also related to the rational bubble literature (Tirole (1985), Weil (1987),

Fahri and Tirole (2011), Martin and Ventura (2012), Hirano and Yanagawa (2017), and

Hori and Im (2023)). There are some similarities between rational bubble models and ours.

Generally, both models have two types of steady-state equilibria with high and low asset

prices.8 However, the rational bubble models mainly focus on a purely bubble asset such as

fiat money, of which fundamental value is always zero. Thus, these models cannot address

the prices of dividend-yielding assets and indicators such as the PDR. In contrast, both of

them can be addressed in our model.

Our model is closely related to the model of stock price bubbles in Miao and Wang

(2018). Algthouh there are differences in the model setting between their and our models,

the equilibrium dynamics in our model are exactly the same as that in Miao and Wang

(2018). Thus, our model generates the same results as Miao and Wang (2018).

However, the implication for asset pricing is quite different. Miao and Wang (2018)

interpret high stock prices as asset bubbles because the market value of a firm exceeds the

value of capital it owns. Although their interpretation is plausible, it is different from the

firms is isomorphic to the Benhabib and Farmer (1994) model after aggregation. See Benhabib and Farmer
(1999) for a survey of the literature.

8The local stability around the steady states in our model is the same as that in existing rational bubble
models. In the models of rational bubbles, the bubbly steady state is determinate or unstable and the
bubbeless steady state is stable. In our model, the steady state with a high stock price is locally determinate
and the steady state with a low stock price is locally indeterminate.
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definition of the rational bubbles as they themselves state (see footnote 1 of their paper).

Hirano and Toda (2024) formally prove the nonexistence of rational bubbles in the model

of Miao and Wang (2018). Besides, their complicated model makes it difficult to define the

PDR. In contrast, our model is quite simple, which allows us to follow the rational bubble

literature and to calculate the value of future dividend streams. We believe that our approach

more directly connects the theoretical model to empirical data.

In spite of the same dynamic system as Miao and Wang (2018), we find that the asset

price is determined by the fundamental term. We show that even fundamental term may

rise and fall due to self-filling expectation, which has a significant impact on macroeconomic

performance.

The rest of the paper is organized as follows. Section 2 presents our model. Section 3

characterizes the steady-state equilibrium with high and low asset prices. Section 4 derives

asset price implications in our model. Concluding remarks are in Section 6.
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2 The Model with Endogenous Credit Constraints

Time is continuous and runs from t = 0 to ∞. All households are identical, so that we

assume the representative household. There is a continuum of firms whose measure is one.

Each firm is indexed by j ∈ [0, 1]. The market value of firm j is V j
t and it delivers dividend

Dj
t at time t. There are no aggregate and idiosyncratic uncertainty in the economy.

2.1 Households

As in Miao and Wang (2018), the representative household is endowed with a linear utility,

Ut =
∫∞
t

cse
−r(s−t)ds, where r > 0 is a (constant) subjective discount rate and ct is consump-

tion at time t. The representative household inelastically supplies one unit of labor and owns

the firms through stock holdings. Its budget constraint is
∫
V j
t ϕ̇

j
tdj + ct = wt +

∫
Dj

tϕ
j
tdj,

where wt is the wage rate, ϕj
t denotes the holdings of firm j’s stock, and thus ϕ̇j

t denotes the

purchasing of firm j’s stock. The utility maximization yields

rV j
t = Dj

t + V̇ j
t , (1)
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and the transversality condition is

lim
T→∞

V j
Tϕ

j
T e

−rT = lim
T→∞

V j
T e

−rT = 0. (2)

In (2), we use the stock market clearing condition ϕj
t = 1.

For simplicity, we assume the linear utility by following Miao and Wang (2018). However,

a concave utility function does not change our main result. The point is that the interest

rate becomes equal to the subjective discount rate at steady state(s). See the discussion just

below Proposition 5.

2.2 Firms

Each firm produces a single final good that can be used for consumption and capital accu-

mulation. We normalize the price of the final good to one. The production function is a

standard neoclassical production function Y j
t = F (Kj

t , N
j
t ), where Kj

t and N j
t are capital

and labor inputs of firm j, respectively. F (Kj
t , N

j
t ) is constant returns to scale in capital and

labor, exhibits positive and diminishing marginal products in both arguments, and satisfies

the Inada condition and F (0, N j
t ) = F (Kj

t , 0) = 0.

We describe firm j’s behavior in the infinitesimally short time interval between time t

and t+ dt. Here, t and dt can differ among firms because different firms could have different

planning periods.9 At time t, firm j owns the capital stock Kj
t . Unlike Miao and Wang

(2018), there is no trading of capital Kj
t among firms. This means that capital of firm j is

specific to the firm. For example, Kj
t may reflect the production technology and productivity

specific to firm j. In the time interval [t, t + dt], firm j employs N j
t dt units of labor. At

the end of this interval (time t + dt), firm j completes its final good production and sells it

to households as a consumption good and other firms as an investment good, earning the

revenue Y j
t dt.

At the same time, firm j invests Ijt dt units of the final good produced by other firms in

the capital stock during the interval of [t, t+dt]. We assume that firm j’s own output cannot
9Putting firm index j on the time interval, as in [tj , tj + dtj ], might be more precise. However, to make

the notation simple, we omit index j from the time interval.
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be used for firm j’s investment. Then, Kj
t evolves according to

dKj
t = (Ijt − δKj

t )dt, (3)

where δ > 0 is the capital depreciation rate.

2.3 Endogenous Credit Constraints

Note that there is a timing mismatch. Firm j invests in capital at the start of the time

interval (time t), while it earns revenue from production at the end of the time interval (time

t+ dt). To finance its investment, firm j makes a credit purchase contract with other firms.

Firm j procures Lj
tdt units of the final good at time t with a commitment to repay it at time

t+dt after it earns revenue.10 No interest is charged on this payment. Assume that η ∈ [0, 1]

fraction of investment Ijt dt must be financed by the credit purchase contract. Firm j must

satisfy

ηIjt dt ≤ Lj
tdt. (4)

As in Miao and Wang (2018), the wage payment wtN
j
t is not subject to timing mismatch.11,12

The enforcement of credit contracts is imperfect, so that firm j has an option of default.

Let vN(Kj
t , t) and vD(Kj

t , t) be the stock values of a non-defaulting and defaulting firm

with capital stock Kj
t at time t, respectively. We assume that vN(Kj

t , t) and vD(Kj
t , t) are

differentiable with respect to both arguments. Define v(Kj
t , t) = max

{
vN(Kj

t , t), v
D(Kj

t , t)
}

.

A defaulting firm does not repay Lj
tdt. It is detected with probability ζdt during the

interval of [t, t+ dt]. If detected, it is forced to pay a penalty depending on its market value.

Assume that the penalty payment is equal to v
(
λ(Kj

t + dKj
t ), t+ dt

)
, where λ > 0. The

10At time t + dt, firm j repays by using sales of consumption goods to households, the 1 − η fraction of
investment goods sales to other firms, and repayments from other firms.

11In Benhabib and Wang (2013) and Liu and Wang (2014), the wage and interest payments to households,
wtNt and rtKt, are subject to timing mismatch. In their models, households wait to receive income from
labor and capital, so that they effectively provide credit to firms. Thus, firms make a credit contract with
households. In contrast, we focus on the credit contract among firms.

12Our main results are not affected even if the wage payment wtN
j
t is subject to timing mismatch.
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detected firm continues its operation after the penalty payment. Hence, its value satisfies

vD(Kj
t , t) =(Y j

t − wtN
j
t − Ijt + Lj

t)dt+
1− ζdt

1 + rdt
v
(
Kj

t + dKj
t , t+ dt

)
+

ζdt

1 + rdt

[
v
(
Kj

t + dKj
t , t+ dt

)
− v

(
λ(Kj

t + dKj
t ), t+ dt

)]
. (5)

As a non-defaulting firm repays Lj
tdt, its value satisfies

vN(Kj
t , t) = (Y j

t − wtN
j
t − Ijt )dt+

1

1 + rdt
v
(
Kj

t + dKj
t , t+ dt

)
. (6)

We impose an incentive-compatibility constraint for the firm j, vN(Kj
t , t) ≥ vD(Kj

t , t).

If vN(Kj
t , t) ≥ vD(Kj

t , t), firms have no incentive to default. Using (4), (5), (6), and the

approximation of dt · dt = 0 and taking dt → 0, we can rewrite this inequality as

ηIjt ≤ ζv
(
λKj

t , t
)
. (7)

We simply call (7) the credit constraint. This inequality states that firm j’s investment is

limited by a fraction of its market value. We interpret ζ/η in (7) as the extent of the credit

constraints, which is common to all firms. The increase in ζ/η stimulates firms’ investment.

2.4 Optimization and First-order Conditions

As long as (7) is satisfied, we have v(Kj
t , t) = vN(Kj

t , t). We rearrange (6) and take the limit

dt → 0 to obtain the following maximization problem of firm j:

rv(Kj
t , t) = max

Nj
t ,I

j
t

(Y j
t − wtN

j
t − Ijt ) +

∂v
(
Kj

t , t
)

∂K
(Ijt − δKj

t ) +
∂v
(
Kj

t , t
)

∂t
, s.t. (7). (8)

The first-order conditions of the problem are given by

wt =
∂F (Kj

t , N
j
t )

∂N
, (9)

ηµt =
∂v
(
Kj

t , t
)

∂K
− 1, (10)

where µt is the Lagrangian-multiplier associated with (7). In (10), ∂v
(
Kj

t , t
)
/∂K is Tobin’s

10



marginal q. If and only if the credit constraint (7) binds, Tobin’s marginal q is greater than

investment cost (=1). Using (9), we obtain

Y j
t − wtN

j
t =

∂F (Kj
t , N

j
t )

∂Kj
t

Kj
t ≡ RtK

j
t . (11)

3 Equilibrium Dynamics and Steady State

This section derives equilibrium dynamics and the steady state equilibrium. We just present

our results here. The next section discusses the mechanisms and implications of our results.

3.1 Equilibrium Dynamics

As in Miao and Wang (2018), we conjecture that v(Kt, t) is linear in Kj
t as follows:

v(Kj, t) = QtK
j + Zt. (12)

In (12), we intentionally drop time index t from Kj to emphasize that the functional form of

v(Kj, t) depends on time t, which is reflected by the time dependence of Qt and Zt. Then,

we have

∂v(Kj, t)

∂t
= Q̇tK

j + Żt and ∂v(Kj, t)

∂Kj
= Qt. (13)

Because the first equation shows how the functional form changes over time, we need not

differentiate one of the arguments, Kj
t , with respect to t.

The following Proposition characterizes the dynamics of Zt and Qt.

Proposition 1 Suppose that Qt > 1. Then, (7) binds and we have

Ijt =
ζ

η

(
λQtK

j
t + Zt

)
. (14)

11



Zt and Qt satisfy the following differential equations:

Żt =

{
r − ζ

η
(Qt − 1)

}
Zt, (15)

Q̇t = (r + δ)Qt −Rt −
ζ

η
λ(Qt − 1)Qt, (16)

as well as the transversality conditions

lim
T→∞

QTK
j
T e

−rT = lim
T→∞

ZT e
−rT = 0. (17)

(Proof) See Appendix C.

Equation (14) implies that large ζ and λ mean that the default costs are large and hence

firms have less incentive to default. A small η suggests that investment is less subject to the

credit constraint. Thus, large ζ/η and λ indicate a loose credit constraint in our model.

3.2 Steady State Equilibria

If η > 0, the equilibrium dynamics have two steady states: one with Zt = 0 and the other

with Zt > 0. For simplicity, we focus on symmetric equilibria where Kj
t = Kt for all j and

omit firm index j. When we focus on the steady state, we omit time index t from variables

that are constant in a steady state. Besides, in the remainder of the paper, the variables with

an asterisk, such as Q∗, K∗, and Z∗, represent the steady-state variables with Zt > 0. The

firm value with K∗ is denoted by v∗(K∗). Variables and values with double asterisks, such

as Q∗∗, K∗∗, Z∗∗, and v∗∗(K∗∗), denote the steady-state ones in the steady-state equilibrium

with Z = 0. The following proposition shows the existence of the steady-state equilibria

Proposition 2 Suppose that η > 0. (i) There exists a unique steady-state equilibrium with

Z∗∗ = 0 in which (7) binds and Q∗∗, R∗∗ and K∗∗ satisfy

Q∗∗ =
η

ζ

δ

λ
(> 1), R∗∗ = Q∗∗r + δ, and ∂F (K∗∗, 1)

∂K
= R∗∗, (18a)
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if and only if

0 < λ <
η

ζ
δ. (18b)

(ii) There exists a unique steady-state equilibrium in which (7) binds and Z∗, Q∗, R∗, and

K∗ satisfy

Z∗

K∗ =
η

ζ
δ − λ

(
1 +

η

ζ
r

)
> 0, (18c)

Q∗ = 1 +
η

ζ
r(> 1), R∗ = [(1− λ)r + δ]Q∗, and ∂F (K∗, 1)

∂K
= R∗, (18d)

if and only if

0 < λ <
δ

ζ
η
+ r

. (18e)

(Proof) See Appendix D.

Because (18e) implies (18b), the two steady states coexist. If λ is small and η/ζ is large to

satisfy (18e), then the credit constraints bind in the both steady states.

3.3 Relationship to Miao and Wang (2018)

Propositions 1 and 2 are analogous to Propositions 1, 3, and 4 in Miao and Wang (2018).

Set ζ
η
≡ π < 1 in (14), (15), and (16). Then, the dynamic system in our model becomes the

same as that of Miao and Wang (2018). If we set ζ
η
= π in all equations and inequalities of

Proposition 2, then, all steady-state values and the existence conditions are identical to those

presented in Miao and Wang (2018) (see Propositions 3 and 4 in Miao and Wang (2018)).

3.4 Local Stability around the Steady States

Because the dynamics system of our model is the same as that of Miao and Wang (2018),

our model has the same local dynamics around the steady states as those in Miao and Wang

(2018).13 The steady states with Z∗(> 0) is locally determinate. For any K0 > 0, there

exists a unique equilibrium with Zt > 0 converging to the steady state with Z∗(> 0) as t

approaches ∞. The steady state with Z = 0 is locally indeterminate. Given K0, there exist
13See Online Appendix A in Miao and Wang (2018) for the formal prove.
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infinitely many equilibria starting Z0 ≥ 0 such that these equilibrium paths converge to the

steady state with Z = 0 as t approaches ∞.

Although our model provides the same equilibrium characteristics as Miao and Wang

(2018)’s model, there are some important differences between their and our models. First,

firms in their model are subject to idiosyncratic shocks, whereas firms in our model are free

from uncertainty. Second, capital is traded at a price of Qt in their model. We assumes that

capital of a firm is specific to the firm. Hence, capital is not traded in the market.

3.5 Comparison between the Two Steady States

Since inequality (18e) implies (18b), the following Proposition is obtained.

Proposition 3 Assume that inequality (18e) holds. Then, there exist two steady-state equi-

libria.

(i) Capital stock: We have

K∗∗ < K∗ and v∗∗(λK∗∗) < v∗(λK∗).

(ii) Market value: Assume that F (Kt, Nt) = KαN1−α (α ∈ (0, 1)). If λ > 0 is not too large,

we have

v∗∗(K∗∗) < Q∗K∗ < v∗(K∗).

(Proof) See Appendix E.

Proposition 3 shows that under the same parameter set, multiple steady states with high

and low market values arise in the economy. Moreover, Proposition 3 simply states that

the high market value is associated with large capital stock level. The mechanism behind

Proposition 3 is discussed in the next section.
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4 Asset Price, Fundamental Value, and Bubbles

As discussed in Section 3.4, our model provides the same results as the model of Miao and

Wang (2018). Assuming that Kt is traded at a price of Qt in the market, they interpret

that QtKt is the fundamental value of a firm and Zt represents an asset bubble.14 Although

their interpretation is plausible and intuitive, it is different from the definition commonly

used in the rational bubble literature, as they themselves point out in footnote 1 of their

paper. Moreover, we assume that Kj
t is specific to firm j and is not traded in the market.

Thus, the direct application of Miao and Wang (2018)’s interpretaion of Zt to our model

may be problematic. Because the purpose of the present study is to examine the PDR, we

follow the rational bubble literature by examining the difference between the asset price and

the fundamental value. We believe that our approach more directly connects the theoretical

model to empirical data.

4.1 Asset Price and PDR

In the utility maximization problem of the household, we denote the stock price of a firm as

Vt. As Vt = v(Kt, t) holds in equilibrium, we have

V̇t =
∂v(Kt, t)

∂K

dKt

dt
+

∂v(Kt, t)

∂t
=

∂v(Kt, t)

∂K
(It − δKt) +

∂v(Kt, t)

∂t
. (19)

By using (3), (11), (13), and (19), we rewrite (8) as

rVt = RtKt − It + V̇t. (20)

We have derived the above equation by solving the firm’s optimization problem. This equa-

tion must be consistent with the no-arbitrage condition (1) that is derived from the house-

holds’ optimization problem. Comparison between (1) and (20) yields

Dt = RtKt − It.

14Under this interpretation, agents can profit from the following arbitrage trade. An agent purchases Kt

units of capital at a cost of QtKt. After that, He or she starts up a business and then sells the business at a
price of QtKt + Zt. Miao and Wang (2018) exclude such an arbitrage trade by assumption.
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The dividend of a firm is equal to the operating profits minus investment and is distributed

to households. By solving (20), we derive the familiar asset price equation:

Vt =

∫ ∞

t

(RvKv − Iv) e
−r(v−t)dv︸ ︷︷ ︸

V f
t

+ lim
T→∞

VT e
−r(T−t)︸ ︷︷ ︸

Bt

.

According to the familiar definition, the term V f
t is the fundamental term, which is the

present value of the future dividend sequence limT→∞
∫ T

0
Dte

−
∫ t
0 rsdsdt. The term Bt is the

bubble term.

Focusing on the steady states, we evaluate V f and measure the deviation of the asset

price from the fundamental term in the following proposition.

Proposition 4 At the steady states, vf is given by

V f ≡
∫ ∞

t

(RvKv − Iv) e
−r(v−t)dv = QK + Z ≡ V, (21)

where (V f , V,Q,K,Z) = (V f ∗, V ∗, Q∗, K∗, Z∗) or (V f ∗∗, V ∗∗, Q∗∗, K∗∗, 0).

(Proof) See Appendix F.

Clearly, (21) implies Bt = 0. The stock price is entirely determined by the sum of the

discounted future dividend and the bubble term is zero. Moreover, the bubble term is zero

even along the transitional dynamics. As Santos and Woodford (1997) point out (see equation

(2.4) in their paper), bubble can never start in rational bubble models. Thus, if the bubble

term is zero in a steady state, it is also zero along a transitional path converging to it.15

Our result is consistent with the (non-)existence conditions of rational bubbles in the

literature. Many authors repeatedly show that rational bubbles exist if and only if the

economic growth rate exceeds the interest rate in the economy without bubbles. In our
15Because V f

t is a solution of (20), we have rV f
t = Dt + V f

t . Thus, the bubble term Bt ≡ Vt − V f
t follows

Ḃt = rBt. If Bt = 0 holds for some t, it must hold for other ts.
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model, the economy is not growing while the interest (discount) rate is strictly positive.16,17

Besides, Hirano and Toda (2024) formally prove the nonexistence of rational bubbles in the

model of Miao and Wang (2018).

We next derive the PDRs in the two steady states. We now know that the stock price is

entirely determined by the sum of the discounted future dividend. Thus, in the two steady

states, we have

V =
D

r
,

where (V,D) = (V ∗, D∗) or (V ∗∗, D∗∗). We obtain the following proposition.

Proposition 5 The two steady stats have the same PDR:

PDR∗ =
1

r
= PDR∗∗.

Note that even if we employ a concave utility function, Proposition 5 holds. This is

because the interest rate becomes equal to the subjective discount rate of the household at

the steady states.

4.2 Implications and Interpretations

Propositions 3 (ii) imply that the market price of a firm is not uniquely determined in our

model. On the other hand, Proposition 5 shows that the PDR is uniquely determined.

Different steady states with the same PDR have different the firm values. Our model shows

that even without significant changes in the PDR, the stock price of the firms can change

sharply. This may happen if productivity of the economy is different in the different steady

states. However, this is not the case in our model. Because (18e) implies (18b), the two
16In addition, Kocherlakota (1992) shows that in any equilibrium with asset bubbles, the discounted value

of the aggregate endowment is infinite. Similarly, Santos and Woodford (1997) prove that asset bubbles do
not exist if the net supply of the asset is positive and the discounted value of the aggregate endowment is
finite. Our non-existence result of bubbles is consistent with these two influential studies.

17Rational bubble models usually assume some forms of heterogeneity to ensure that arbitrage trading
of assets takes place among economic agents. Many authors use overlapping-generations frameworks or
introduce idiosyncratic shocks to generate heterogeneity. See Hori and Im (2023) for example. In our model,
both households and firms are homogeneous.
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steady states coexist under the same set of parameters. This means that the two steady

states share a common productivity.

In sum, the two steady states have the same PDR and the same TFP. Nevertheless, they

have the different asset prices. This is consistent with the recent trend observed in the United

States and Japan.

We emphasize that the high asset price is not caused by speculation. Because no het-

erogeneity is included in our mode, asset resale is excluded. To understand the mechanism

behind the multiple equilibria and the high asset price, we replicate the credit constraint of

firm j, (7), assuming that it is binding:

ηIjt = ζvj(λKj
t , t).

Remember that the market value of the firm is entirely determined by the future dividend

stream, given the current capital stock level. The dividend is equal to the operating profits

net of investment costs. Thus, vj(λKj
t , t) represents a discounted value of the future profit

stream that starts from λKj
t . Suppose that the future profits of firm j is expected to increase.

This expectation immediately increases vj(λKj
t , t). As a result, the credit constraint of firm j

is eased, allowing firm j to expand investments and accumulate a greater amount of capital.

Consequently, the future profit stream indeed increases. The initial optimistic expectation

about profitability becomes self-fulfilling. This self-fulfilling expectation leads to the existence

of multiple equilibria, where the market value of the firm can be high or low. Since the future

dividend stream depends on the expectation of economic agents in our model, we call V f the

bubbly fundamental value, instead of calling it the fundamental value simply.18

5 Bursting Asset Price

In this section, we examine whether a stock price surge without an increase in the PDR is

likely to be sustained perpetually. Specifically, we investigate whether a sunspot shock could
18Even if the wage payment is subject to timing mismatch, main results are still hold. Even in this

environment, there exist multiple steady state with Z∗ > 0 and Z∗∗ = 0, respectively. In both steady states,
asset prices are entirely determined by the sum of the discounted dividend. In equilibrium, the fundamental
term is determined by the self-fulfilling expectation

18



cause a sudden decline in the stock value. If such a sunspot equilibrium does not exist, a

stock price rise without the rising PDR is sustainable. However, if it exists, even without

notable increases in the PDR, stock prices may suffer a sudden crash.

Remember that the stock price of a firm is given by Vt = v(Kt, t) = QtKt+Zt (see (12)) in

equilibrium. We focus on a sunspot shock that changes the term Zt from a positive value to

zero. We assume that the economy is initially on a steady state with Zt > 0. Given Zt > 0,

Zt+dt > 0 continues to hold with probability 1 − εdt (ε > 0). Otherwise, Zt+dt becomes

equal to zero. Once Zt+dt = 0 is realized, we assume that Zt = 0 holds in subsequent future.

Then, the economy converges to the steady state with Z∗∗ = 0, which is characterized by

the case (i) in Proposition 2. The sunspot shock is independent of the event of detecting

the defaulting firm. Appendix G provides the derivation of the Bellman equation and the

equilibrium dynamics.

In the presence of the sunspot shock, the initial steady state is generally different from

the steady state with Z∗. We call it the sunspot steady-state equilibrium. The following

proposition shows the existence of the sunspot equilibrium.

Proposition 6 Suppose that η > 0. If and only if

0 < λ <
δ

ζ
η
+ r + ε

(22)

holds, then there exists a unique sunspot steady-state equilibrium.

(Proof) See Appendix G.1.

Thus, the stock price of the firms may suffer a sudden clash even if their PDRs do not show

significant changes.

Finally, we numerically show that a sunspot shock actually causes a sudden decline in

asset prices under some parameters condition.19 See Figure 3. The economy is initially in

the sunspot steady-state equilibrium, and then the sunspot shock hits the economy at time

t = 0. With the realization of the shock, the stock price of the firms suddenly decline.
19We specify the production function as the standard Cobb-Douglass production function, F (Kt, Nt) =

Kα
t N

1−α
t where 0 < α < 1. We set α = 0.4, r = 0.4, δ = 0.25, η = 1, ζ = 0.01 (ζ/η = π = 0.01), λ = 0.2,

and ε = 0.05. All of these parameters are exactly same as those used in Miao and Wang (2018).
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After the sudden crash, the stock price and capital stock gradually move to the steady-state

equilibrium with Z∗∗ = 0. Thus, the economy suffers a sudden decline in the market price of

the firms, followed by a subsequent recession, even if there are no increases in the PDR and

no negative shocks to the fundamentals.

Figure 3 Sudden Clash in Stock Prices

6 Conclusion

We constructed a model with endogenous credit constraints and no TFP growth. Two types

of steady-state equilibria are obtained. The two steady states have the same PDR and the

same TFP, nevertheless, stock prices can be high or low. In both equilibria, stock prices are

entirely determined by the sum of the future dividend stream. The future dividend stream

depends on the expectation of agents. Thus, the self-fulfilling expectation determines stock

prices and affects macroeconomic performances. The high stock price significantly stimulates

capital accumulation.
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qt
0

q̇t q̇t = 0

q

q̇t = (r − g)qt − 1

−1

Figure A1 Dynamics of qt

Appendix

A Rational Bubbles and the PDR

Rational bubbles are defined as the difference between the market price of an asset and its

fundamental value. The latter is defined by the summation of the present value of the future

dividend stream. Consider the standard no-arbitrage condition: rVt = V̇t + Dt, where r is

the market interest rate, Vt is the asset price, and Dt is the dividend of the asset. Define

the price-to-dividend ratio (PDR) by qt ≡ Vt/Dt. Then, qt satisfies q̇t = (r− g)qt − 1, where

g is the growth rate of the dividend. If the PDR is constant (q̇t = 0), q = 1/(r − g) and

equivalently Vt = Dt/(r − g) hold (see Figure A1). Thus, the asset price is equal to the

fundamental value. On the other hand, if there is a rational bubble (qt > q, or equivalently,

Vt > Dt/(r − g)), the PDR monotonically increases over time.

21



B PER

The PER also behaves similarly to the PDR during certain periods. In Japan, the PER

(Shiller10) increased by 123% from 1985 to 1989, which is comparable to a 167% increase

in stock prices. In contrast, the PER decreased by 27% from 2011 to 2023 although stock

price increased by 203% during the same period. In the U.S., the PER (Shiller10) increased

by 122% from 1994 to 1999 and stock prices increased by 179%. The PER increased by

49% from 2009 to 2019. This is larger than the increase in the PDR (10%). Most notably,

however, it is much smaller than the 140% rise in stock prices.

The Shiller PER is calculated based on the average real earnings per share over the past

10 years. The PER (Shiller10) is based on 10-year average earnings per share. In Japan,

monthly earnings per share data are available only from June 1980. Since the Japanese PER

(Shiller10) can only be calculated from May 1990, we use the five-year average of earnings

per share to calculate the PER(Shiller5) from May 1985 to December 1994.20,21

20The U.S. Shiller PER is obtained from the Shiller website. The Japanese Shiller PER is calculated from
earnings per share and the average stock price. Earnings per share are obtained from Tokyo Stock Exchange,
Inc. The average stock price is the Arithmetic Stock Price Average obtained from NIKKEI NEEDS-Financial
QUEST and Tokyo Stock Exchange, Inc. Earnings per share and average share price use data from the TSE
First Section until March 2022, and data from the TSE Prime Market from April 2022 onward. As of
September 24, 2015, the method of calculating the average stock price was changed, so the value of the
average stock price prior to September 2015 would be 10 times the value when calculated using the new
method. In determining the PER, the value of the average stock price prior to September 2015 is multiplied
by 10, and the value calculated using the new method is used as is from October 2015. The TSE publishes two
average stock prices for September 2015, one before and one after September 24, but data after September
24 were used. Average stock prices for other months were obtained from Nikkei Needs. The earnings per
share calculation method was changed in October 2018, and if data prior to September 2018 is calculated
using the new method, it will be 10 times the published value. For data prior to September 2018, we use 10
times the published value.

21The correlation coefficient between PER(Shiller10) and PER(Shiller5) from May 1990 to December 1994
is 0.993. if PER(Shiller10) can be calculated from May 1985 to April 1990, PER(Shiller10) is Shiller5), then
it is likely that the PER(Shiller10) would have been similar to the PER(Shiller5).
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C Proof of Proposition 1

Suppose that Qt > 1. Then, (7) binds and we must have (14). By using (11), (12), (13), and

(14), we rewrite (8) as

r(QtK
j
t + Zt) = RtK

j
t − Ijt +Qt(I

j
t − δKj

t ) + Q̇tK
j
t + Żt

= RtK
j
t − δQtK

j
t + (Qt − 1)Ijt + Q̇tK

j
t + Żt

= RtK
j
t − δQtK

j
t + (Qt − 1)

ζ

η

(
λQtK

j
t + Zt

)
+ Q̇tK

j
t + Żt. (C.1)

As the relationship (C.1) holds for any Kj
t > 0, then (15) and (16) must hold. Further as

V j
t = v(Kj

t , t) holds in equilibrium, (2) ensures (17). □

D Proof of Proposition 2

Proof of (i): Suppose that Qt > 1. Then, (14) holds from Proposition 1. Using K̇t = 0

and Kj
t = Kt, we rewrite (3) as I = δK. Substituting I = δK into (14) yields Q∗∗ in (18a).

Set Q̇t = 0 in (16). Substituting Q∗∗ into (16) yields R∗∗ in (18a). Obviously, Q∗∗ and R∗∗

are uniquely determined by (18a). Moreover, Q∗∗ in (18a) shows that Q∗∗ > 1 holds if and

only if (18b). Equation (11) shows that K∗∗ satisfies R∗∗ = ∂F (K∗∗,1)
∂K

. The Inada condition

ensures the uniqueness of K∗∗ since R∗∗ > 0. □

Proof of (ii): Setting Żt = 0 into (15) yields Q∗. Obviously, Q∗ > 1 holds, meaning that

the credit constrains bind, and thus (14) holds. (14) and I = δK yields

(
δ − ζ

η
λQ∗

)
K∗ =

ζ

η
Z∗. (D.1)

Substituting Q∗ into (D.1) yields (18c). Equation (18c) shows that Z∗/K∗ > 0 holds if and

only if (18e) holds. Substituting Q̇∗
t = 0 and Q∗ into (16) yields R∗. From (11) and the Inada

condition, K∗ is uniquely determined by R∗ = ∂F (K∗,1)
∂K

. □

E Proof of Proposition 3

Since inequality (18e) implies (18b), both steady states exist.
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From ∂F
∂K

= R and ∂2F
∂K2 < 0, the following relationship holds.

K∗∗ < K∗ ⇐⇒ R∗ < R∗∗

⇐⇒ [(1− λ)r + δ]

(
1 +

η

ζ
r

)
<

η

ζ

rδ

λ
+ δ

⇐⇒ (18e).

Further, we obtain

K∗∗ < K∗ ⇐⇒ I∗∗ < I∗

⇐⇒ ζ

η
λQ∗∗K∗∗ <

ζ

η
(λQ∗K∗ + Z∗)

⇐⇒ v∗∗(λK∗∗) < v∗(λK∗)

The first line uses I = δK. The second line uses (14). The last line uses (12). Thus,

K∗∗ < K∗ and v∗∗(λK∗∗) < v∗(λK∗) hold if (18e) holds.

Assume that F (Kt, Nt) = KαN1−α (α ∈ (0, 1)). From (18a) and (18c) , we have

Q∗K∗ =

[
αQ∗−α

(1− λ)r + δ

] 1
1−α

> 0,

Q∗∗K∗∗ =

α
(

ηδ
ζ

)1−α

λα

ηδ
ζ
r + δλ


1

1−α

→ 0 as λ → 0.

On the one hand, Q∗K∗ is strictly positive. On the other hand, if λ > 0 is close to zero,

Q∗∗K∗∗ is close to zero. Thus, if λ > 0 is not too large, we have v∗(K∗) = Q∗K∗ + Z∗ >

Q∗∗K∗∗ = v∗∗(K∗∗). □

F Proof of Proposition 4

Since Rt, Kt, and It are constant at the steady state, we have

∫ ∞

t

(RvKv − Iv) e
−r(v−t)dv =

1

r
(RK − I) , (F.1)
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where (R,K, I) = (R∗, K∗, I∗) or (R,K, I) = (R∗∗, K∗∗, I∗∗). We first consider the steady

state with Zt = 0. At the steady state, I∗ = δK∗ holds. Then, (F.1) can be rewritten as

∫ ∞

t

(RvKv − Iv) e
−r(v−t)dv =

1

r
(R∗∗ − δ)K∗∗

=
1

r
(rQ∗∗ + δ − δ)K∗∗

= Q∗∗K∗∗.

The second equality uses the second equation in (18a).

Next consider the steady state with Zt > 0. From (16) and Q̇t = 0, we have R∗K∗ =

(r + δ)Q∗K∗ − ζ
η
λ(Q∗ − 1)Q∗K∗. At the steady state, I∗ = δK∗ holds. Thus, (F.1) can be

rewritten as

∫ ∞

t

(RvKv − Iv) e
−r(v−t)dv =

1

r

[
(r + δ)Q∗K∗ − ζ

η
λ(Q∗ − 1)Q∗K∗ − δK∗

]
=

1

r

[
rQ∗K∗ + (Q∗ − 1)

(
δ − ζ

η
λQ∗

)
K∗
]

=
1

r

[
rQ∗K∗ + (Q∗ − 1)

ζ

η
Z∗
]

= Q∗K∗ + Z∗.

The third line uses (18c) and Q∗ = 1+ η
ζ
r in (18d). The last line again uses Q∗ = 1+ η

ζ
r. □

G Derivation of the Equilibrium dynamics

First, we derive the Bellman equation in the economy with Zt > 0. Given Zt > 0, Zt+dt

changes to zero with the probability εdt, meaning the the stock value of firm with capital

Kt changes with εdt. Here, we drop index j from Kt since we focus on an equilibrium where

Kj
t = Kt for all j. The values of a defaulting and non-defaulting firm with Kt ((5) and (6))

are modified as follows:

vD(Kt, t) = (Yt − wtNt − It + Lt)dt

+
1− ζdt

1 + rdt
{(1− εdt)v(Kt + dKt, t+ dt) + εdt · ṽ(Kt + dKt, t+ dt)}
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+
ζdt

1 + rdt
{(1− εdt) [v(Kt + dKt, t+ dt)− v (λ(Kt + dKt), t+ dt)]

+εdt [ṽ(Kt + dKt, t+ dt)− ṽ (λ(Kt + dKt), t+ dt)]} ,

vN(Kt, t) = (Yt − wtNt − It)dt

+
1

1 + rdt
{(1− εdt)v(Kt + dKt, t+ dt) + εdt · ṽ(Kt + dK, t+ dt)} ,

where ṽ(Kt, t) is the value of the firm with Kt when the sunspot shock is realized. The

incentive-compatibility constraint for the firm with Kt is given by vN(Kt, t) ≥ vD(Kt, t) and

the credit constraint (7) still holds.

With the sunspot shock, the maximization problem for the firm with Kt in the economy

with Zt > 0 is modified as follows:

rv(Kt, t) = max
Nt,It

(Yt − wtNt − It) +
∂v (Kt, t)

∂K
(It − δKt) +

∂v (Kt, t)

∂t

− ε [v(Kt, t)− ṽ(Kt, t)] , s.t. (7).

Except for the last term −ε[v(Kt, t)− ṽ(Kt, t)], the above maximization problem is same as

(8). The first-order conditions (9) and (10) still hold. Once the sunspot shock is realized

with the probability εdt, the value of the firm with Kt switches from v(Kt, t) to ṽ(Kt, t), and

thus the last term ε[v(Kt, t) − ṽ(Kt, t)] is interpreted as the capital gain (or loss) when the

shock is realized.

We guess v(K, t) = QtK + Zt as in (12). We have ṽ(K, t) = Q̃tK. When (7) binds,

aggregate investment is given by It = ζ(λQtKt + Zt)/η. Zt and Qt staisfy the following

differential equations:22

Żt =

{
r + ε− ζ

η
(Qt − 1)

}
Zt, (G.1)

Q̇t = (r + ε+ δ)Qt −Rt −
ζ

η
λ(Qt − 1)Qt − εQ̃t, (G.2)

where Rt = ∂F (Kt, 1)/∂K and Q̃t = J(Kt). With the realization of the shock, Zt > 0

immediately drops to zero. And Qt jumps to Q̃t, where Q̃t is on the saddle path converging
22The derivation procedure is the same as (15) and (16) in Proposition 1.
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to the steady state with Z∗∗ = 0. Later, we see how Q̃t is determined later.

G.1 Proof of Proposition 6

We denote the value of a variable X at the sunspot steady state by X∗
ε . Then, at the sunspot

steady state, we have

Z∗
ε

K∗
ε

=
η

ζ
δ − λQ∗

ε > 0, (G.3)

Q∗
ε = 1 +

η

ζ
(r + ε) , (G.4)

R∗
ε = [(1− λ)r + δ − λε]Q∗

ε + ε
(
Q∗

ε − Q̃
)
, (G.5)

∂F (K∗
ε , 1)

∂K
= R∗

ε.

We first derive these for equations. Setting Żt = 0 in (G.1) yields (G.4) which uniquely

determines Q∗
ε. Equation (G.4) shows that Q∗

ε > 1 holds and the credit constraint (7) binds,

and thus we have ηI = ζ(λQK+Z). This equation and I = δK yield (G.3). Equations (G.3)

and (G.4) show that Z∗
ε/K

∗
ε > 0 holds if and only if (22). Substituting (G.4) and K̇t = 0

into (G.2) yields (G.5).

Next, we derive Q̃ in the following two steps. In the first step, we show that Q̃ depends

positively on R∗
ε by using the phase diagram after the sunspot shock (Figure A2).23 Point

b is the steady-state equilibrium with Z∗∗ = 0 characterized by (18a).24 Figure A2 shows

that Point b is saddle-point stable and hence there is a unique saddle path converging to it.

At the initial sunspot steady state, capital stock is K∗
ε and the marginal product of capital

is equal to R∗
ε. At the moment of the sunspot shock, K∗

ε and R∗
ε do not change. Instead,

Qt jumps to Q̃, where Q̃ is on the unique saddle path (see Point a in Figure A2). As R∗
ε

increases, Point a moves toward Point b. We denote this positive relationship between Q̃ and

R∗
ε as Q̃ = J̃(R∗

ε).

In the next step, we substitute (G.4) and Q̃ = J̃(R∗
ε) into (G.5). Then, we have

R∗
ε = [(1− λ)(r + ε) + δ]

[
1 +

η

ζ
(r + ε)

]
− εJ̃(R∗

ε). (G.6)

23See G.2 for the derivation of the phase diagram
24Since (22) implies implies (18b), the steady-state equilibrium with Z∗∗ = 0 always exists if (22) holds.

27



The LHS increases with R∗
ε, whereas the RHS decreases with R∗

ε (see Figure A3). The

intersection of the both sides uniquely determine R∗
ε and Q̃

G.2 Phase Diagram

We draw the phase diagram after the sunspot shock is realized (Figure A2). Suppose that

Zt = 0. When the credit constraints bind, Kt and Qt satisfy

K̇t =

(
ζ

η
λQt − δ

)
Kt, (G.7)

Q̇t = (r + δ)Qt −Rt −
ζ

η
λ(Qt − 1)Qt. (G.8)

From (G.7), K̇t = 0 locus is given by Qt =
ηδ
ζλ

. From Rt = ∂F (Kt, 1)/∂Kt, we have dRt/dt =

FKKdKt/dt where FKK ≡ ∂2F
∂K2 < 0. Then, Ṙt = 0 locus is also given by Qt =

ηδ
ζλ

. Moreover,

Ṙt > 0 ⇐⇒ K̇t < 0 holds because of FKK < 0. Then, in the region below (above) Ṙt = 0

locus, we have Ṙt > 0 (Ṙt < 0). See Figure A2.

From (G.8), Q̇t = 0 locus is given by Rt = (r + δ)Qt − ζ
η
λ(Qt − 1)Qt ≡ Γ(Qt). The

function Γ has the following properties:

Γ(0) = 0 and Γ

(
1 +

r + δ
ζ
η
λ

)
= 0,

Γ′(Qt) = −2
ζ

η
λQt + (r + δ +

ζ

η
λ),

Γ′(0) = r + δ +
ζ

η
λ > 0,

Γ′(Qt) = 0 ⇐⇒ Qt =
r + δ + ζ

η
λ

2 ζ
η
λ

.

In the region below (above) Q̇ = 0 locus, we have Q̇t > 0 (Q̇t < 0).

The phase diagram shows that the steady-state equilibrium with Z∗∗ = 0 (point b) is

saddle point stable.
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Rt0

Qt

R∗∗R∗
ε

b

aQ̃

Q∗∗
Ṙt = 0

Figure A2 Phase Diagram

LHS of (G.6)RHS of (G.6)

R∗
ε0 R∗

ε

Figure A3 Existence of Q̃ and R∗
ε
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