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1 Introduction

The sharing economy, globally prevalent across various markets and industries, has grown

rapidly with the development of information technology, enabling individuals to use their idle

or underutilized capacities efficiently (Schlagwein et al., 2019). Examples of underutilized

capacities include private rooms, parking lots, automobiles, and, potentially, human capital.

These capacities, invested for an individual’s own use in the past, are underutilized. As a result

of using these installed capacities without further new investments, there is usually an upper

limit to each individual’s supply of services.

The private lodging business is a typical example of such a sharing economy. In Japan,

the new law regulating private lodging businesses took effect in 2018, excluding illegal private

lodging businesses and bringing legal businesses under the local government’s supervision and

regulation. The law allows anyone to lease their rooms for a maximum of 180 days a year on

advance registration with their local government. As individuals lease their own underutilized

rooms, the marginal cost for providing such services is low. However, registration and super-

vision impose non-negligible market entry costs. Thus, the number of suppliers entering the

new regulated market is fewer than the earlier market where individuals would engage in illegal

businesses with little or no entry costs. Many of these individuals have now exited the private

lodging market. This implies that the number of individuals entering this market varies with

the entry costs.

A distinct property of this market, which is overlooked by the literature, is that the quantity

each individual can supply is restricted. Individual suppliers lease their own rooms, built in

the past for their own use, but are now underutilized. Therefore, there is an upper limit to the

quantity of serviceable rooms they can supply. Moreover, the law allows them to lease their

rooms for a maximum of 180 days a year only, which can be another supply constraint.

In this article, we focus on this property of a sharing economy and investigate the welfare

consequence of free entry under the output-cap constraint. We find that even under strategic

interaction among suppliers (imperfect competition), the number of entering individual suppli-

ers is efficient, in contrast to the literature, which suggests that the number of entering firms
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is excessive (Mankiw and Whinston, 1986; Suzumura and Kiyono, 1987).

2 The model

We consider a market where n suppliers with an output-cap constraint compete in Cournot

fashion. The maximal output each supplier can choose is q̄ > 0. Let the quantity of supplier

i = 1, . . . , n be qi and Q =
∑n

i=1 qi. The inverse demand of this market is represented by a

continuous function P (Q) : R+ 7→ R+ with P ′ < 0 when P > 0. The production cost of a

supplier is C(qi) : R+ 7→ R+ with C ′ ≥ 0, C ′′ ≥ 0, and entry cost of each supplier is f > 0. We

assume the regular conditions usually adopted in the literature (Vives, 1999).

Assumption 0 The inverse demand function satisfies the following conditions: (i) P (0) >

C ′(0), (ii) ∃Q, P (Q) = 0, and (iii) P ′(Q) + P ′′(Q)q < 0 for all Q such that P (Q) > 0 and for

all q ∈ [0, Q].

We consider the two-stage game that runs as follows. In the first stage, each supplier decides

to enter the market. In the second stage, the suppliers simultaneously choose their quantities

under the output-cap constraint.

The game is solved by backward induction. In the second stage, for given n, the profit

maximization problem of supplier i is

max
qi

πi = P (Q)qi − C(qi)− f subject to qi ≤ q̄.

Let q∗(n) be the equilibrium output of a supplier with this constraint, which is common for all

i by symmetry. At this market equilibrium, each supplier’s profit is π∗(n) = P (nq∗(n))q∗(n)−

C(q∗(n)) − f . In the first stage, the equilibrium number of firms, n∗, is determined by the

zero-profit condition, π∗(n∗) = 0.1

If the constraint does not bind (or does not exist), each supplier produces qU (n), such that

∂πi
∂qi

∣∣∣∣
qi=qU (n)

= P (nqU (n)) + P ′(nqU (n))qU (n)− C ′(qU (n)) = 0, (1)

1For simplicity, we neglect the integer problem.
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for given n, where the superscript U means (u)nconstrained. Assumption 0 assures the well-

performed equilibrium quantities,2 which are obtained by differentiating (1) as

∂qU (n)

∂n
= − qU (P ′ + P ′′qU )

n(P ′ + P ′′qU ) + (P ′ − C ′′)
< 0, (2)

∂nqU (n)

∂n
=

qU (P ′ − C ′′)

n(P ′ + P ′′qU ) + (P ′ − C ′′)
> 0. (3)

The equilibrium number of suppliers without the constraint nU satisfies

πi|qi=qU (nU ) = P (nUqU (nU ))qU (nU )− C(qU (nU ))− f = 0. (4)

We focus on the cases where the free-entry equilibrium with nU > 0 and qU (nU ) > 0 exists

if there is no output-cap constraint. Then, this equilibrium is unique (Ino and Matsumura,

2012).

We assume the following.

Assumption 1 Each supplier’s output cap q̄ is strictly smaller than the equilibrium output

without the constraint qU (nU ).

The constraint binds and thus each supplier produces q̄ if and only if3

∂πi
∂qi

∣∣∣∣
qi=q̄

= P (nq̄) + P ′(nq̄)q̄ − C ′(q̄) ≥ 0, (5)

for given n. If each supplier produces q̄, the number of entering suppliers is nC such that

πi|qi=q̄ = P (nC q̄)q̄ − C(q̄)− f = 0, (6)

where superscript C denotes (c)onstrained.

We do not assume the constraint binds a priori, but assume the following.

Assumption 2 nC > 0.

Note that nC is uniquely determined by (6) under this assumption4 whenever the constraint

binds or not.
2Along with (1) (P −C′ > 0 at the equilibrium), (2) and (3) satisfies the assumptions of excess entry theorem

provided by Mankiw and Whinston (1986). Thus, without the constraint, our model results in socially excessive
market entry.

3From Assumption 0(iii), the second-order condition is globally met, that is πi is strictly concave in qi. Thus,
the following is also the sufficient condition.

4The left-hand side of (6) strictly decreases in nC for given q̄. See also the 2nd paragraph of the proof of
Theorem 1.
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Example: linear demand and cost. To understand the assumptions and model perfor-

mance of our free-entry market, we provide a linear example. Suppose that P (Q) = a − Q

and C(q) = cq with a > c ≥ 0. Then, by (1) and (4), we obtain qU (n) = (a − c)/(n + 1) and

qU (nU ) =
√
f . Thus, Assumption 1 corresponds to q̄ <

√
f . By (6), we obtain

nC =
(a− c)q̄ − f

q̄2
.

Thus, Assumption 2 corresponds to q̄ > f/(a − c). The upper-left panel of Figure 1 depicts

the level of nC for q̄ ∈ (f/(a − c),
√
f), which satisfies Assumptions 1 and 2. As seen in the

lower-left panel, under the assumptions, q̄ is smaller than the unconstrained outcome qU (nC)

for each nC .5 Hence, the constraint binds in the free entry equilibrium (i.e., q∗(n∗) = q̄ with

n∗ = nC). The equilibrium market price is P (n∗q∗(n∗)) = c + f/q̄, which is depicted in the

upper-right panel of Figure 1. The equilibrium market size n∗q∗(n∗) = nC q̄ is also depicted in

the lower-right panel.

3 Efficient entry theorem

Social welfare for given n is

W ∗(n) =

∫ nq∗(n)

0
P (s)ds− nC(q∗(n))− nf.

Let no be the welfare maximizing number of firms. In contrast to the well-known “Excess entry

theorem” in oligopoly markets (Mankiw and Whinston, 1986; Suzumura and Kiyono, 1987),

under the output-cap constraint, the number of firms to enter the market is socially optimal.6

Theorem 1 Under Assumptions 0-2, the entry is efficient (i.e., n∗ = no).

5Explicitly, we have

qU (nC) =
(a− c)q̄2

(a− c)q̄ − f + q̄2
∴ qU (nC)− q̄ =

(f − q̄2)q̄

(a− c)q̄ − f + q̄2
>

(f −
√
f
2
)q̄

(a− c)q̄ − f + q̄2
= 0,

where we use Assumptions 1 and 2 to obtain the last inequality.
6The literature shows that the number of entering firms can be insufficient (Ghosh and Morita, 2007a,b; Gu

and Wenzel, 2009; Sato and Matsumura, 2020). In these cases, the number of entering firms is inefficient under
plausible conditions, and then too, our result contrasts with their results.
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Proof. First, we show that q̄ < qU (nC) for any q̄ that satisfies Assumptions 1 and 2. By

q̄ < qU (nU ) (Assumption 1) and nU > 0, we obtain

0 = P (nUqU (nU )) + P ′(nUqU (nU ))qU (nU )− C ′(qU (nU )) (∵ (1) with n = nU )

< P (nU q̄) + P ′(nU q̄)q̄ − C ′(q̄). (∵ Assumption 0(iii), P ′ < 0, and C ′′ ≥ 0) (7)

Assumption 0(i,ii) implies that there exists Q̄ > 0 such that P (Q̄) = C ′(Q̄). Since qU (nU ) < Q̄

holds, we restrict our attention to the case where q̄ < Q̄ by Assumption 1.

We investigate the left-hand side of (6) by the function

π(q;n) = P (nq)q − C(q)− f.

We show that nC > 0 if and only if (i) π(q̄; 0) = P (0)q̄ − C(q̄) − f > 0, which is equivalent

to (ii) q̄ > q0 such that π(q0; 0) = P (0)q0 − C(q0) − f = 0 as long as q̄ < Q̄. To show (i),

suppose that nC > 0. Then, π(q̄; 0) > 0 holds since π(q̄;nC) = 0 by (6) and ∂π(q̄;n)/∂n =

P ′q̄2 < 0. Conversely, suppose that π(q̄; 0) > 0. When n is sufficiently larger than Q̄/q̄ > 0,

π(q̄;n) < 0 by Assumption 0(ii). Thus, there uniquely exists nC > 0 such that π(q̄;nC) = 0

by ∂π(q̄;n)/∂n < 0. To show (ii), observe that from P (0) > C ′(0) (Assumption 0(i)) and

P (0) > P (Q̄) = C ′(Q̄), ∂π(q; 0)/∂q = P (0)−C ′(q) > 0 for all q ∈ (0, Q̄) by C ′′ ≥ 0. Moreover,

π(0; 0) = −C(0) − f < 0. Thus, π(q̄; 0) > 0 if and only if there uniquely exists q0 > 0 that

satisfies π(q0; 0) = 0 and q̄ > q0.

Hence, q̄ that satisfies Assumptions 1 and 2 is q̄ ∈ (q0, qU (nU )). By the continuity of

nC (i.e., nC that satisfies (6) is continuous in q̄ by the uniqueness and the implicit function

theorem), nC ↘ 0 as q̄ ↘ q0 because π(q0; 0) = 0. Accordingly, we can pick up q̄ ∈ (q0, qU (nU ))

(sufficiently close to q0) such that it satisfies nC ≤ nU under Assumptions 1 and 2 (note that

qU (nU ) > 0 and nU > 0 is independent of q̄). For such q̄, suppose that q̄ ≥ qU (nC) contrarily.

Then, since nCqU (nC) ≤ nC q̄ by using nC > 0 (Assumption 2), we obtain

0 = P (nCqU (nC)) + P ′(nCqU (nC))qU (nC)− C ′(qU (nC)) (∵ (1) with n = nC)

≥ P (nC q̄) + P ′(nC q̄)q̄ − C ′(q̄). (∵ Assumption 0(iii), P ′ < 0, and C ′′ ≥ 0) (8)
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In contrast, since nC q̄ ≤ nU q̄ by nC ≤ nU (now we are taking such q̄), we obtain

P (nC q̄) + P ′(nC q̄)q̄ − C ′(q̄) ≥ P (nU q̄) + P ′(nU q̄)q̄ − C ′(q̄)

by Assumption 0(iii). This contradicts (7) and (8). Thus, for the picked-up q̄, q̄ < qU (nC)

holds.

If there exists another q̄ ∈ (q0, qU (nU )) such that q̄ ≥ qU (nC), because of the continuity

of qU (nC) in q̄ (i.e., qU (n) is continuous in n by the maximum theorem and nC is continuous

in q̄ as mentioned above), considered with the result of the previous paragraph, we must have

q̄ ∈ (q0, qU (nU )) that satisfies q̄ = qU (nC). Such q̄ and nC satisfies the conditions for free-

entry equilibrium without the constraint (i.e., (1) and (4)) by q̄ = qU (nC) and (6). However,

since q̄ < qU (nU ), this contradicts the uniqueness of the free-entry equilibrium without the

constraint. Thus, q̄ < qU (nC) holds for any q̄ that satisfies Assumptions 1 and 2.

Next, we show that n∗ = no. Since qU (nC) > q̄, as shown above, there exists ϵ > 0, for all

n ∈ (nC − ϵ, nC + ϵ), qU (n) > q̄. Thus, by taking such ϵ, for all n ∈ (nC − ϵ, nC + ϵ),

0 = P (nqU (n)) + P ′(nqU (n))qU (n)− C ′(qU (n)) (∵ (1))

< P (nq̄) + P ′(nq̄)q̄ − C ′(q̄). (∵ Assumption 0, P ′ < 0, and C ′′ ≥ 0) (9)

Thus, (5) is satisfied. In other words, the constraint binds (i.e., q∗(n) = q̄ for all n ∈ (nC −

ϵ, nC + ϵ)). Therefore, we can differentiate W ∗(n) at n = nC as

∂W ∗(nC)

∂n
= P (nC q̄)q̄ − C(q̄)− f = π(q̄;nC). (10)

Since q∗(nC) = q̄ by nC ∈ (nC − ϵ, nC + ϵ) and thus n∗ = nC , π(q∗;n∗) = π(q̄;nC) = 0 by

(6). This and (10) imply that n∗ satisfies the necessary condition for the welfare maximizing

number of firms (i.e., ∂W ∗(n∗)/∂n = 0).

For sufficiency, consider the cases where q̄ < qU (n) and q̄ ≥ qU (n), respectively. Since qU (n)

is strictly decreasing in n by (2) and q̄ < qU (nC), by taking n1 > nC such that q̄ = qU (n1), the

former case corresponds to the case of n < n1 and the latter to the case of n ≥ n1.

When n < n1 (q̄ < qU (n)), similar to (9), the constraint always binds in this case (i.e.,
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q∗(n) = q̄ for all n < n1). Therefore, for all n < n1,

∂2W ∗(n)

∂n2
= P ′(nq̄)q̄2 < 0. (11)

This concavity and the necessary condition, ∂W ∗(nC)/∂n = 0 by (10), imply that nC maximizes

the welfare in the range of n < n1.

When n ≥ n1 (q̄ ≥ qU (n)), the constraint does not bind and q∗(n) = qU (n). Thus,

∂W ∗(n)

∂n
= πU (n) + n[P (nqU (n))− C ′(qU (n))]

∂qU (n)

∂n
< πU (n) < 0,

where the last inequality holds because (1)–(2) and

πU (n) = P (nqU (n))qU (n)− C(qU (n))− f

< P (n1qU (n1))qU (n)− C(qU (n))− f (∵ nqU (n) > n1qU (n1) by (3), and P ′ < 0)

< P (nC q̄)qU (n)− C(qU (n))− f (∵ n1qU (n1) > nC q̄ by qU (n1) = q̄ and n1 > nC)

≤ P (nC q̄)q̄ − C(q̄)− f = 0. (∵ q̄ ≥ qU (n) and P (nC q̄)− C ′(q) > 0 for q < q̄ by (9))

Thus, the welfare decreases as the number of firms increases in the range of n ≥ n1. Conse-

quently, nC maximizes the welfare globally (i.e., no = nC = n∗). Q.E.D.

Under moderate assumptions (Assumptions 0–2), the output-cap constraint in fact binds,

and thus, there is no business stealing effect in this market. Therefore, the number of entering

suppliers is efficient.

4 Concluding remarks

In this article, we have focused on the quantity cap constraint—an important property of a

sharing economy, and yet overlooked by the literature. We show that under plausible conditions,

the entry of individual suppliers is efficient. Therefore, additional entry regulations and taxes

on individual suppliers are unnecessary.

The sharing economy may crowd out traditional businesses. For example, new private

lodging businesses may reduce the business opportunities for traditional hotel businesses, which
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may create additional distortions or welfare gains. Investigating this problem using a multi-

product model is a potential area for future research.
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Figure 1: The model performance of a linear model. The graphs are depicted in the case where
a = 10, c = 0, and f = 1 for 0 < q̄ < 1 (horizontal axis).
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