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limited consideration models, and cover leading theories in the literature including the limited

attention model, the rationalization model, the categorize-then-choose model, and the rational

shortlist model. While tests involve combinatorial calculation, by applying the backtrack-

ing method, we perform simulations to numerically compare observable restrictions of various

models. As a result, we find remarkable differences in observable restrictions across models.
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1 Introduction

Let X be a set that is interpreted as the set of alternatives, and let A � X be a set of

feasible alternatives for an agent. Following the classical choice theory, an agent will choose

the most preferable alternative according to her preference which is often assumed to be

complete, asymmetric, and transitive. In testing if an agent’s behavior can be accounted for

by this standard framework, the theory of revealed preference is one of the most prevailing

methods for economists. Typically, we collect finitely many observations of an agent’s behavior

O � tpat, AtqutPT , where T is the set of indices of observations, At is the set of feasible

alternatives at observation t, and at is the chosen alternative from At. It is well known that

a data set O is consistent with the standard choice framework, if and only if it obeys the

strong axiom of revealed preference (SARP), which requires acyclicity of the direct revealed

preference relation ¡R defined as x2 ¡R x1, if x2 � at for some t P T , x2 � x1, and x1 P At.

However, as pointed out in a number of experimental studies, violation of SARP is not rare

at all, and various theories of bounded rationality have been proposed for systematic analyses

of cyclical choices. Amongst others, a number of studies investigate decision procedures where

some feasible alternatives are a priori excluded from an agent’s consideration. Namely, for a

given feasible set A, an agent maximizes her preference relation not necessarily on A itself, but

on some subset ΓpAq � A. For example, Masatlioglu, Nakajima, and Ozbay (2012) and Lleras,

Masatlioglu, Nakajima, and Ozbay (2017) consider a situation where an agent is overwhelmed

by the number of alternatives offered to her. In this case, due to the limitation of recognition

capacity, she has to maximize her preference on a subset of the feasible set. As another example,

Manzini and Mariotti (2007, 2012) and Cherepanov, Feddersen, and Sandroni (2013) establish

shortlisting decision models. There, an agent has some criteria possibly different from her

preference (e.g. psychological restrictions, a preference on categories rather than alternatives,

and others), and she makes a sequential decision: an agent firstly makes a shortlist which

is “optimal” in terms of her criteria, and then she chooses an alternative to maximize her

preference relation. In this case, ΓpAq can be interpreted as a shortlist derived in the first

step.

The primal objective of this paper is to develop a theory for testing these models from a

data set O � tpat, AtqutPT . More specifically, we provide a necessary and sufficient condition

under which O is consistent with a model as follows: for every feasible set A � X, an agent

maximizes some complete, asymmetric, and transitive preference ¡ on her consideration set
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ΓpAq � A. We emphasize that the tests in this paper do not require “full observation” of

a choice function. After constructing revealed preference characterizations of below referred

models, we compare the observable restrictions of them by using simulation.

It is clear that, without any restriction on a set mapping Γ, such a model is vacuous in

that any choice behavior is accounted for by letting tatu � ΓpAtq for every t P T . Thus, we

deal with models where some restrictions are imposed on an agent’s consideration mapping

Γ : 2X Ñ 2X , which specifies her consideration set for every A � X. In particular, we start

from looking at the following three restrictions: (1) the attention filter property (AFP), which

requires that for every A1, A2 � X, ΓpA2q � A1 � A2 ùñ ΓpA1q � ΓpA2q; (2) the competition

filter property (CFP), which requires that for every A1 � A2, ΓpA2q XA1 � ΓpA1q; and (3) the

joint of AFP and CFP, which we denote by AFP+CFP.1 Loosely speaking, AFP requires that

the removal of unrecognized alternatives does not change the set of recognized alternatives,

while CFP requires that every alternative recognized at a larger feasible set must be recognized

at a smaller feasible set.

A number of important decision procedures are covered by the above listed restrictions on a

consideration mapping. First of all, the limited attention model in Masatlioglu, Nakajima, and

Ozbay (2012) is nothing but a preference maximization model on a consideration mapping with

AFP. Second of all, the order rationalization model in Cherepanov, Feddersen, and Sandroni

(2013) can be characterized as a preference maximization model with a consideration mapping

satisfying CFP. In addition, the categorize-then-choose model by Manzini and Mariotti (2012)

also derives a consideration mapping that obeys CFP.2 This property is also used in the limited

consideration with status quo model in Dean, Kibris, and Masatlioglu (2017). If one admits

that both AFP and CFP are reasonable restrictions on a consideration mapping, then it

seems natural to require both of them, or AFP+CFP on a consideration mapping. Indeed, as

shown in Lleras, Masatlioglu, Nakajima and Ozbay (2015), many real-world examples actually

support both AFP and CFP (e.g. paying attention to n most advertised commodities).3

What is not covered by the above three types of restrictions is the rational shortlist method

(RSM) in Manzini and Mariotti (2007). There, an agent makes a shortlist as the set of

maximal elements of an asymmetric first step preference, and then she makes a choice to

1The definition of AFP can be rewritten as x P A and x R ΓpAq ùñ ΓpAzxq � ΓpAq.
2In the original setting in Manzini and Mariotti (2012), an agent’s preference is assumed to be just complete and

asymmetric. However, throughout this paper, we shall require that an agent has a strict preference.
3Lleras, Masatlioglu, Nakajima, and Ozbay (2015) is a working paper version of Lleras, Masatlioglu, Nakajima,

and Ozbay (2017).
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maximize her preference relation. Regarding shortlists as consideration sets, a consideration

mapping must obey CFP, but it has stronger observable restrictions. Indeed, even if a data set

is rationalizable by a limited consideration model with AFP+CFP, it may not be supported

as a result of a rational shortlisting model. In addition, under the transitive rational shortlist

method (TRSM) where a first step preference is asymmetric and transitive, a consideration

mapping obeys AFP+CFP, but again, such a model has stronger observable restrictions than a

limited consideration model with AFP+CFP.4 In this paper, we also cover a revealed preference

characterization of these rational shortlisting type models.

As summarized above, amongst five models dealt with in this paper, there are several

subclass/superclass relations, while some models are logically independent with each other. By

simulation, we can numerically compare relative strength of observable restrictions across these

models. Following Bronars (1987), we generate random choices on a sequence of feasible sets

and apply our tests to see the fraction of data that are consistent with each model. Moreover,

provided that observable restriction of each model depends on the structure of feasible sets,

we repeat the above procedure over randomly generated profiles of feasible sets. This type of

simulation is useful to evaluate and compare models based on actual or experimental data by

using Selten index (see Selten, 1991 and Beatty and Crawford, 2011). In our simulation, we

stick to the environment with 20 feasible sets each of which contains 2 - 8 alternatives out of

10 alternatives, which seems easily implementable in experiments.

The result of simulation is rather striking in that strength of observable restriction is quite

different across models. To be specific, AFP model is very hard to reject with average pass

rate of random data exceeds 99%, and CFP model is also permissive with average pass rate

exceeds 60%. However, the joint of them, or AFP+CFP model, is far more restrictive with

average pass rate being less than 4%. Thus, the joint of rather weak behavioral restrictions

could result in strong observable restrictions. The rational shortlisting type models both have

strong testing power: the averate pass rate of RSM is less than 3% and that of TRSM is less

than 0.1% .

From a technical perspective, our revealed preference tests involve combinatorial calcula-

tions, which could be a challenge for practical use. We deal with it by suggesting a set of

testing algorithms employing the backtracking method and actually apply it to simulation.

4Similar to the case of the categorize-then-choose model, the original setting in Manzini and Mariotti (2007) does
not require the transitivity, while Au and Kawai (2011), which firstly investigates the transitive rational shortlist
model, does require the transitivity also on a second step preference relation.
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In that sense, one may regard our simulation also as the implementation of our algorithm,

with which even 10,000 sets of random data can be calculated in acceptable time by using

unexceptional computers.

Connection with existing studies: It is standard in the literature of bounded rationality

that models are characterized by using an exhaustive data set, or a choice function. For

example, Masatlioglu, Nakajima, and Ozbay (2012) and Lleras, Masatlioglu, Nakajima, and

Ozbay (2015, 2017) characterize AFP, CFP, and AFP+CFP in terms of a restriction on a choice

function. Regarding rational shortlisting models, Manzini and Mariotti (2007) and Au and

Kawai (2011) provide a choice function based characterization. That is, these papers consider

a data set where a choice is observed under every logically possible feasible set. However, these

results are not extendable to partially observed data sets O � tpat, AtqutPT , where choices on

some subsets of X may not be observed. Indeed, as shown in simulation part, these full-

observation tests cannot even “approximate” necessary and sufficient conditions, particularly

for AFP+CFP, RSM, and TRSM models.

An important issue concerning revealed preference analysis with partially observed data

is the “extendability” problem pointed out by De Clippel and Rozen (2014). The essence

of this problem is described by using AFP model as follows. Suppose that for a data set

O � tpat, AtqutPT , there exists a pair pΓ�,¡�q so that at ¡� x for all x P Γ�pAtqzx with Γ�

obeying AFP on all observed feasible sets, i.e., ΓpAtq � As � ΓpAtq ùñ ΓpAsq � ΓpAtq for

every s, t P T . However, this does not ensure the existence of Γ : 2X Ñ 2X that obeys AFP for

all (including unobserved) feasible sets A P 2X . The same issue also applies to other models in

this paper. Following De Clippel and Rozen, our definition of rationalizability requires for a

consideration mapping to obey specific properties (AFP, CFP etc.) on entire domain, rather

than observed feasible sets.5 They also provide revealed preference tests for AFP and CFP by

using a different method from ours. Roughly speaking, their approach focuses on finding out an

acyclic binary relation on X that is interpreted as a “candidate” of a part of preference inferred

from data and models, while our approach focuses on exploring some model-based structure

of revealed preference cycles. As we will see in Section 6, the difference of approaches could

raise quite different performance in computation.

Another important contribution of De Clippel and Rozen’s paper is to show that testing

5Naturally, one could consider the rationalizability by AFP model (or other models) with imposing AFP only on
observed feasible sets, which is done by Tyson (2013).
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AFP model is computationally tricky: indeed, it is shown to be NP hard. Despite that, this

paper shows that, including AFP, our revealed preference tests reasonably work for “not too

large” data. Thus, this paper complements and extends De Clippel and Rozen’s paper by

proposing an alternative approach for testing limited consideration models, and adding tests

that are not covered by that paper (AFP+CFP, RSM, and TRSM). In addition, we provide

a practical algorithm and numerical comparison of observable restrictions of models, which

shows that models that are newly treated in this paper have remarkably stronger observable

restrictions compared to AFP and CFP models.

Organization of the paper: In Section 2, we introduce limited consideration models that

are dealt with in this paper. We provide our basic idea for testing models in Section 3, followed

by the revealed preference tests for AFP, CFP, and AFP+CFP in Section 4 and for rational

shortlisting type models in Section 5. Simulation results and technical issues concerning it are

stated in Section 6.

2 Choices under limited consideration

Consider a single-agent decision problem where X is a finite set of alternatives, and ¡ is a

complete, asymmetric, and transitive preference of an agent, which we refer to as a strict

preference.6 If an agent obeys the rational choice model, then for every feasible set A � X,

she maximizes her strict preference ¡ on A.

On the other hand, motivated by evidences contradicting the rational choice theory, a

number of alternative decision procedures are proposed in the literature of bounded rationality.

There, either consciously or unconsciously, an agent makes a shortlist of alternatives before

she chooses an alternative. That is, there exists a consideration mapping Γ : 2X Ñ 2X such

that ΓpAq � A for every A � X, and an agent maximizes her strict preference on ΓpAq, rather

than A itself. In what follows, given a consideration mapping Γ, ΓpAq is referred to as a

consideration set on A. Furthermore, in general, we refer to a pair of a consideration mapping

and a strict preference pΓ,¡q as a limited consideration model.

In Masatlioglu, Nakajima, and Ozbay (2012), they consider a situation in which an agent

cannot recognize all feasible alternatives due to limitation of recognition capacity. There,

6For every x P X, x £ x, and for every distinct x, y P X, either x ¡ y or y ¡ x holds, and for every distinct
x, y, z P X, x ¡ y and y ¡ z imply x ¡ z.
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following psychological literature, a consideration mapping Γ is supposed to have the attention

filter property (AFP) defined as: for every A � X and x P A,

x R ΓpAq ùñ ΓpAzxq � ΓpAq. (1)

In words, the consideration set is not affected when unrecognized elements are removed from

a feasible set. Alternatively, (1) is rewritten as: for every A � X and B � A,

ΓpAq � AzB ùñ ΓpAzBq � ΓpAq. (2)

In what follows, we refer to such model pΓ,¡q as a limited consideration model with AFP.

When there is no confusion, we may simply refer to such model as an AFP model.

As an alternative structure of a consideration mapping, Lleras, Masatlioglu, Nakajima, and

Ozbay (2017) consider the following restriction: for every A1 � A2 and x P A1,

x R ΓpA1q ùñ x R ΓpA2q. (3)

In words, if an alternative is not recognized in a smaller feasible set, then it cannot be rec-

ognized in a larger feasible set. This seems plausible if an agent has limited capacity of

recognition. Equivalently, (3) can be written as: for every A1 � A2,

ΓpA2q XA1 � ΓpA1q. (4)

This condition is equivalent to the monotonicity of the set of unrecognized alternatives. We

say that Γ obeys the competition filter property (CFP) if it obeys (4), and pΓ,¡q is referred to

as a limited consideration model with CFP, or in short a CFP model.

It is known that a consideration mapping that obeys CFP can be generated by conscious

shortlisting. In Cherepanov, Feddersen, and Sandroni (2013), they consider a situation in

which an agent has some criteria on alternatives, other than her strict preference. Each

criterion is referred to as a rationale, which may be a psychological restriction or may be a

social norm. A set of rationales of an agent is denoted by tRkuKk�1, each of which is assumed to

be just a binary relation, so it may not be complete, asymmetric, or transitive. An alternative

x P X is said to be supported on A � X, if there exists some rationale Rk such that xRkx1

for all x1 P Azx. Then, an agent is supposed to eliminate all unsupported alternatives from a
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feasible set, that is, a consideration mapping is defined such that for every A � X,

ΓpAq � tx P A : DRk such that xRkx1 for all x1 P Azxu. (5)

A pair pΓ,¡q as an order rationalization model, if Γ is represented as (5) for some set of

rationales tRkuKk�1. Cherepanov, Feddersen, and Sandroni (2013) showed that a consideration

mapping obeys CFP, if and only if it can be represented as (5).

In addition, a categorize-then-choose model in Manzini and Mariotti (2012) also derives a

consideration mapping with CFP. In their model, an agent has a shading relation ¡S , which

is assumed to be asymmetric on 2X . In the first step, an agent makes a shortlist such that for

every A � X,

ΓpAq � tx P A : EB1, B2 � A such that B2 ¡S B1 and x P B1u. (6)

Loosely speaking, an alternative in a dominated category is eliminated from candidates of her

choice, and then, in the second step, an agent maximizes her strict preference ¡ on ΓpAq. It

is known that a consideration mapping defined as (6) obeys CFP and vice versa.7

If we admit that both AFP and CFP are reasonable, then it is natural to consider the joint

of AFP and CFP. Indeed, as pointed out in Lleras, Masatlioglu, Nakajima, and Ozbay (2015),

both AFP and CFP are plausible in a number of real-world examples. For example, consider

the situations in which an agent pays attention to: (a) n-most advertised commodities; (b)

all commodities of a specific brand, and if there are none available, then all commodities

of another specific brand; or (c) n-top candidates in each field in job markets. All of these

decision procedures derive consideration mappings satisfying both AFP and CFP. A pair pΓ,¡q

is referred to as a limited consideration model with AFP+CFP, or an AFP+CFP model in

short, if Γ obeys AFP+CFP.

Limited consideration models with CFP and those with AFP+CFP can be related to

Manzini and Mariotti (2007)’s two-step decision procedure called a rational shortlist method.

There, an agent has a preference relation for each step, say ¡1 and ¡, and for every A � X,

7If some alternative x is eliminated from consideration at some A1, then, by definition, there exist some B1, B2 � A1

such that B2 ¡S B1 and x P B1. Clearly, by considering the same pair of subsets B1 and B2, x must be excluded from
ΓpA2q for any A2 with A1 � A2. See, for the other direction, Manzini and Mariotti (2012) as well as Cherepanov,
Feddersen, and Sandroni (2013).
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an agent firstly makes a shortlist ΓpAq such that

ΓpAq � tx P A : Ex1 P A such that x1 ¡1 xu, (7)

and then, in the second step, an agent maximizes her second step preference relation ¡ on

ΓpAq. In Manzini and Mariotti (2007), the first step preference ¡1 is just assumed to be acyclic,

while Au and Kawai (2011) deal with the case where ¡1 is asymmetric and transitive.8 We say

that Γ obeys the (transitive) rational shortlist method, or in short, RSM (TRSM), if it can be

described as (7) by using an acyclic (asymmetric and transitive) binary relation ¡1. By abuse

of terminology, we refer to pΓ,¡q as an RSM (TRSM) model, if Γ obeys RSM (TRSM).

By letting x2Rx1 ðñ x1 £1 x2, Γ defined as (7) is a special case of that in (5), and

hence, it must obey CFP. Moreover, one can confirm that if ¡1 is asymmetric and transitive,

Γ defined in (7) also obeys AFP, i.e. it obeys AFP+CFP. To see this, suppose that x P A

and x R ΓpAq. If z P ΓpAq, there exists no x1 P A such that x1 ¡1 z, and, in particular,

there is no such x1 in Azx. Hence, it holds that ΓpAq � ΓpAzxq. To see the converse set

inclusion, suppose that z P ΓpAzxq, or there exists no x1 P Azx such that x1 ¡1 z. If z R ΓpAq

were to hold, it must be that x ¡1 z. Since x R ΓpAq, there exists some x1 P Azx such that

x1 ¡1 x. However, by transitivity, this implies that x1 ¡1 z, contradicting the assumption that

z P ΓpAzxq. Hence, it holds that z P ΓpAq, which, in turn, implies that ΓpAzxq � ΓpAq. Thus,

every (transitive) rational shortlisting model obeys CFP (AFP+CFP), but not vice versa;

there exists a consideration mapping with CFP (AFP+CFP) that cannot be represented as

(7) for any acyclic (asymmetric and transitive) binary relation on X.

3 A basic idea for revealed preference tests

Before proceeding to our main results, in this section, we put forward a general observation

that holds for all limited consideration models. It is well known that the rational choice theory

can be easily tested from agent’s observed choice behavior. Let O � tpat, AtqutPT be a finite

set of observed choices, where T � t1, 2, ..., T u is the set of indices of observations, At � X is

the feasible set at observation t, and at P At is the chosen alternative at t P T . We use x to

8In Manzini and Mariotti (2007), they assumed that both ¡1 and ¡ are just asymmetric. However, since they
also assume that the choice function is nonempty for all A � X, it is clear that ¡1 must be acyclic (otherwise ΓpAq
would be empty for some A).
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represent a generic alternative in X. A key for testing the rational choice model is the direct

revealed preference relation ¡R defined as x2 ¡R x1, if x2 � at for some t P T , x2 � x1, and

x1 P At. In the case of the rational choice theory, motivation of this terminology is obvious.

Indeed, if an agent follows the rational choice model and x2 ¡R x1 for some x2, x1 P X, then

¡R must be contained in the agent’s “true” preference ¡, and hence, ¡R cannot have a cycle,

that is,

x1 ¡R x2 ¡R � � � ¡R xK ùñ xK £R x1. (8)

Actually, the acyclicity of ¡R, which is referred to as the strong axiom of revealed preference

(SARP), fully characterizes the observable restrictions from the rational choice model.

The aim of this paper is to develop counterparts of SARP for testing limited consideration

models presented in the previous section. We define the notion of rationalizability as follows.

Definition 1. A data set O � tpat, AtqutPT is rationalizable by a limited consideration model

M P tAFP, CFP, AFP+CFP, RSM, TRSMu, if there exists a pair p¡,Γq, where ¡ is a strict

preference and Γ : 2X Ñ 2X , such that for every A � X, ΓpAq � A and obeys the property

M on 2X , and at ¡ x for every t P T and x P ΓpAtqzat.

Note that every M P tAFP, CFP, AFP+CFP, RSM, TRSMu excludes the trivial rational-

ization of letting ΓpAtq � tatu for every t P T , even if a data set itself is consistent with

the model (we will see this by an example in the next section). In addition, we require for

Γ to satisfy the corresponding property on entire domain 2X rather than the set of observed

feasible sets. To be precise, we review an example by De Clippel and Rozen (2014) below.

For the data set in the example, we can find a pair pΓ,¡q so that for every t P T , at ¡ x for

every x P ΓpAtqzat and Γ obeys AFP on observed feasible sets. However, it is impossible to

find any Γ that obeys AFP on the entire domain with satisfying at ¡ x for every t P T and

x P ΓpAtqzat.

Example 1. Let X � tx1, x2, x3, x4, x5u, and consider a data set of six observations as below.

In this case, we can construct a pair p¡,Γq such that at ¡ x for every x P ΓpAtqzat and

t 1 2 3 4 5 6
At tx1, x4u tx4, x5u tx1, x2, x3u tx1, x3, x4u tx2, x3, x4u tx2, x4, x5u
at x4 x5 x3 x1 x2 x4
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t P T with Γ obeying AFP only on observed feasible sets. For example, let ΓpA1q � tx1, x4u,

ΓpA2q � tx4, x5u, ΓpA3q � tx3u, ΓpA4q � tx1, x3u, ΓpA5q � tx2, x3u, ΓpA6q � tx2, x4u, and let

x5 ¡ x4 ¡ x2 ¡ x1 ¡ x3. Then, each at maximizes ¡ on At and there exists no pair of s, t P T

such that ΓpAtq � As � At, and hence, AFP is trivially satisfied on observed feasible sets.

However, we cannot extend Γ to 2X with AFP being satisfied on the entire domain. Indeed,

for a unobserved set A � tx2, x3u, (i) ΓpA3q � A � A3 requires that ΓpAq � ΓpA3q � tx3u,

while (ii) ΓpA5q � A � A5 requires that ΓpAq � ΓpA5q � tx2, x3u. In fact, not only this

specification, there is no p¡,Γq that rationalizes the data set with AFP being satisfied on 2X .

We will come back to this point in Section 4.1.

It is easy to check that the rational choice model is a special case of AFP, CFP, AFP+CFP,

RSM, and TRSM respectively: by letting Γ be the identity mapping, it obeys all these prop-

erties. Our theory becomes substantial when O contains revealed preference cycles. Formally,

a profile of alternatives pxkqKk�1 is a cycle with respect to ¡R, if for every k ¤ K,xk ¡R xk�1

and xK � x1. A cycle pxkqKk�1 is minimal, if it contains no other cycle than itself. In addition,

if a cycle is constructed by rotating elements of another cycle (e.g. y ¡R z ¡R x ¡R y is

constructed by rotating x ¡R y ¡R z ¡R x), we regard it as the same cycle with the original

cycle.

Assuming that a data set O has Qp¡ 0q minimal cycles in total, then for 1 ¤ q ¤ Q, the

q-th minimal cycle is represented as pxkqqKq

kq�1. Consider a profile of points
�
xpqq

�Q
q�1

such that

each xpqq is chosen from q-th cycle. We refer to such profile as a selection profile, and each xpqq

is referred to as a selection point of each q-th cycle. As explained below, what is essential in

our theory is that we must choose an “appropriate” selection profile from revealed preference

cycles. Although required properties on a selection profile vary across models, the following

discussion applies to all M P tAFP, CFP, AFP+CFP, RSM, TRSMu.

Suppose that a data set O � tpat, AtqutPT is collected from an agent obeying a specific

limited consideration model. Since we assume that an agent’s preference ¡ is asymmetric and

transitive, for every cycle pxkqqKq

kq�1 there exists at least one k̄q such that xk̄q ¡R xk̄q�1, but

xk̄q�1 ¡ xk̄q . Although such points may not be unique, for each q-th cycle we can arbitrarily

fix one of them, and set that point as a selection point, i.e. xpqq � xk̄q . Denoting by ypqq the

alternative that succeeds the selection point in q-th cycle, we have xpqq � xk̄q , ypqq � xk̄q�1,

and ypqq ¡ xpqq. Since an agent is supposed to maximize her preference on ΓpAq for every

A � X, if there exist some q and t such that at � xpqq, we have ypqq ¡ at, which in turn implies
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ypqq R ΓpAtq. Then we can define for every t P T ,

Bt
�
rxpqqsQq�1

	
�
!
ypqq P At : at � xpqq

)
, (9)

which is empty if there exists no selection point xpqq such that at � xpqq. Although it is

important to note that each Bt depends on the choice of a selection profile, we omit the

argument from (9) for the sake of notational simplicity (there seems to be no crucial danger

of confusion).

This set Bt plays crucial roles in our revealed preference tests. Since x ¡ at holds for every

x P Bt, we have that x R ΓpAtq. Put otherwise, for every t P T , it holds that ΓpAtq � AtzBt.

In other words, if an agent obeys a limited consideration model, we can find a selection profile�
xpqq

�Q
q�1

such that the corresponding tBtutPT obeys ΓpAtq � AtzBt for every t P T . We set

this as a proposition for future references.

Proposition 1. Suppose that O is generated by an agent obeying a limited consideration model

pΓ,¡q. Then there exists a selection profile
�
xpqq

�Q
q�1

such that the corresponding tBtutPT obeys

ΓpAtq � AtzBt for every t P T . In particular, such a selection profile can be constructed by

letting xpqq � xk̄q with xk̄q�1 ¡ xk̄q for each q-th cycle.

Example 2. Let X � tx1, x2, x3, x4, x5, x6, x7u, and consider a data set of five observations

as below:

t 1 2 3 4 5
At tx1, x2, x3u tx1, x2, x4, x6u tx1, x3, x5, x7u tx2, x4, x6u tx3, x5, x7u
at x1 x2 x3 x4 x5

There are four cycles with respect to the direct revealed preference ¡R: x1 ¡
R x2 ¡

R x1;

x1 ¡
R x3 ¡

R x1; x2 ¡
R x4 ¡

R x2; and x3 ¡
R x5 ¡

R x3, and let us number the cycles in this

order.9 Consider the case where we choose rx1, x1, x2, x3s as a selection profile, i.e. xp1q � x1,

xp2q � x2, xp3q � x2, and xp4q � x3. Then, in the first cycle we have xp1q � x1 and yp1q � x2.

Since we have a1 � xp1q, it follows that yp1q � x2 P B1. Following a similar procedure, we have

tBtutPT as follows.

9Recall that we regard x2 ¡
R x1 ¡

R x2 as the same with x1 ¡
R x2 ¡

R x1 and we ignore any non-minimal cycle
such as x1 ¡

R x2 ¡
R x4 ¡

R x2 ¡
R x1.
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t 1 2 3 4 5
Bt tx2, x3u tx4u tx5u H H

AtzBt tx1u tx1, x2, x6u tx1, x3, x7u tx2, x4, x6u tx3, x5, x7u

Table 1: The sets tBtutPT as a result of selection profile rx1, x1, x2, x3s.

4 Testing AFP, CFP, and AFP+CFP

4.1 AFP condition

Suppose that O � tpat, AtqutPT is a data set collected from an agent obeying an AFP model,

i.e. a limited consideration model pΓ,¡q, where Γ obeys AFP defined in (2) on entire 2X .

With no loss of generality, we may assume that O contains cycles with respect to ¡R. By

choosing a selection profile
�
xpqq

�Q
q�1

as specified in Proposition 1, the corresponding tBtutPT

satisfies ΓpAtq � AtzBt for every t P T . Besides, the AFP model casts further restrictions;

given ΓpAtq � AtzBt for every t P T , since Γ must obey AFP, it holds that, for every t P T ,

pAtzBtq � A � At ùñ ΓpAq � ΓpAtq. (10)

The above derives the following important restriction. If pAszBsqYpAtzBtq � pAsXAtq holds,

then, by letting A � pAszBsq Y pAtzBtq, the LHS of (10) is satisfied both for s and t. As a

result, it must hold that ΓpAsq � ΓppAszBsq Y pAtzBtqq � ΓpAtq, which implies that as � at.

In fact, this property, which is summarized as the condition below, characterizes a data set

that is rationalizable by an AFP model.

AFP condition: A selection profile
�
xpqq

�Q
q�1

obeys AFP condition, if for every s, t P T ,

pAszBsq Y
�
AtzBt

�
� pAs XAtq ùñ as � at. (11)

Recall that, as seen from its definition (9), Bt depends on the choice of a selection profile.

It is already clear that for a data set to be rationalizable by an AFP model, there must exist a

selection profile obeying AFP condition. Our more substantial claim is the converse: if there

exists a selection profile obeying AFP condition, then the agent’s behavior can be accounted

for by an AFP model.

Theorem 1. A data set O � tpat, AtqutPT is rationalizable by a limited consideration model

13



with AFP, if and only if there exists a selection profile
�
xpqq

�Q
q�1

obeying AFP condition.

The procedure for the proof of sufficiency is as follows. Given a selection profile
�
xpqq

�Q
q�1

obeying AFP condition, we explicitly construct a consideration mapping that obeys AFP. Then

by using it, a strict preference that rationalizes the data set is also constructed. Specifically,

for tBtutPT corresponding to
�
xpqq

�Q
q�1

, we simply define a consideration mapping Γ such that

for every A � X,

ΓpAq � AzBt, if there exists some t P T such that AtzBt � A � At (12)

� A otherwise.

In general, for a given A � X, there may be multiple observations that satisfy the condition

in (12), i.e. for some s, t P T , AtzBt � A � At and AszBs � A � As. However, in that case,

AzBt � AzBs must hold, and hence, the above construction of Γ is well-defined, which is

proved in Appendix I.

Lemma 1. Suppose that for some s, t P T , AtzBt � A � At and AszBs � A � As. Then, it

holds that AzBt � AzBs.

Based on Γ defined as (12), the proof essentially completes with the help of the following

two lemmas that are proved in Appendix I.

Lemma 2. The consideration mapping Γ defined as (12) obeys AFP.

Lemma 3. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T , x1 P ΓpAtq,

and x2 � x1. Then, ¡� is acyclic and for every t P T , at P ΓpAtq.

The rest of the proof is somewhat routine work: by Lemma 3, the transitive closure of ¡� is

an asymmetric and transitive ordering, and hence, by Szpilrajn’s theorem, it can be extended

to a strict preference ¡ on X. In addition, again by Lemma 3, it holds that for every t P T ,

at ¡ x for every x P ΓpAtqzat. Then, together with Lemma 2, the data set is rationalizable by

the limited consideration model pΓ,¡q, where Γ obeys AFP.

Example 1 (continued). Consider the data set in Example 1. In this data set, we can find

seven minimal cycles, but here it suffices to focus on the following two cycles: x1 ¡
R x3 ¡

R x1

and x2 ¡
R x4 ¡

R x2, which we refer to as the first and second cycles. We show that for
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any combination of selection points of these two cycles, the corresponding selection profile�
xpqq

�7
q�1

cannot satisfy AFP condition. First we show that xp1q � x1 leads a violation of

(11). If xp1q � x1, then regardless of selection points from other cycles, x3 P B4. This, in

turn, implies that pA1zB1q Y pA4zB4q � tx1, x4u � pA1 X A4q, but x4 � a1 � a4 � x1, a

violation of AFP condition. Similarly, any selection profile with xp2q � x4 fails to satisfy (11)

at observations 2 and 6. Finally, we consider a selection profile with xp1q � x3 and xp2q � x2.

This implies that x1 P B3 and x4 P B5, and hence, pA3zB3q Y pA5zB5q � tx2, x3u � A3 XA5.

However, x3 � a3 � a5 � x2, or the violation of (11). As a result, we cannot find any

selection profile obeying (11), or equivalently, the data set in question is not rationalizable by

AFP model.

Example 2 (continued). Consider the data set in Example 2, and recall that there are four

cycles with respect to the direct revealed preference ¡R: x1 ¡
R x2 ¡

R x1; x1 ¡
R x3 ¡

R

x1; x2 ¡
R x4 ¡

R x2; x3 ¡
R x5 ¡

R x3. We show that the selection profile rx1, x1, x2, x3s

actually succeeds in satisfying AFP condition. In fact, the relevant sets: tpBt, AtzBtqutPT are

summarized in Table 1. Looking at Table 1, one can confirm that there is no pair s, t P T such

that pAszBsq Y pAtzBtq � pAs X Atq, and AFP condition is satisfied for this selection profile.

Thus, this data set is rationalizable by AFP model. On the other hand, this data set cannot be

rationalizable by AFP model with the trivial consideration mapping with ΓpAtq � tatu for all

t P T . Indeed, if we set Γ like that, x1 R ΓpA3q and ΓpA3zx1q � ΓpA5q � tx5u � tx3u � ΓpA3q,

which is nothing but a violation of AFP condition.

We conclude this subsection with referring to the connection with De Clippel and Rozen

(2014). They showed that a data set O is rationalized by an AFP model, if and only if there

exists an acyclic ordering ¡� such that for s, t P T with as, at P As XAt and as � at,

Dx1 P AszAt : as ¡� x1 or Dx1 P AtzAs : at ¡� x1. (13)

Note that an ordering ¡� here is not a priori related to the structure of data, and the existence

of such an ordering is directly required. In the above statement, we consciously use the

same notation ¡� with the ordering defined in Lemma 3, since the latter actually obeys the

requirement in (13). To show this, note that under AFP condition, the consideration mapping

Γ defined as in (12) obeys AFP, and ¡� defined in Lemma 3 is acyclic. Suppose by way of

contradiction that (13) is violated by ¡�. The construction of ¡� assures that ΓpAtq � AsXAt
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and ΓpAsq � As X At. Since Γ obeys AFP, we have ΓpAtq � ΓpAsq, which in turn implies

at ¡� as and as ¡� at, a contradiction with the acyclicity of ¡�. In this sense, Theorem

1 provides an equivalent condition with De Clippel and Rozen’s test, and what is more, the

condition is written in terms of the structure of observed choices. Actually, our test and the

test by De Clippel and Rozen (2014) perform quite differently in computation as stated in

Section 6. Loosely speaking, our method works better in most cases, but in the worst cases

where our method takes too much time, De Clippel and Rozen’s method works better. There,

we applied De Clippel and Rozen’s test by converting it as a simple 0-1 integer programming

(see Appendix II for the formulation).

4.2 CFP condition

The issue in this subsection is to develop a revealed preference test for a limited consideration

model pΓ,¡q where Γ obeys CFP on 2X (once again, we require for Γ to have CFP on entire

domain, rather than on observed feasible sets). Recall that, as stated in Section 2, this model

is equivalent to the categorize-then-choose model in Manzini and Mariotti (2012) and the

rationalization model by Cherepanov, Fedderson, and Sandroni (2013). Suppose that O �

tpat, AtqutPT is collected from an agent obeying a CFP model. Again, without loss of generality,

we may assume that O contains cycles with respect to ¡R. By letting
�
xpqq

�Q
q�1

be a selection

profile as specified in Proposition 1, the corresponding tBtutPT obeys ΓpAtq � AtzBt for every

t P T . Bearing this in mind, consider any s, t P T such that As � At. Then, considering

CFP defined in (4), it must hold that ΓpAtq XAs � ΓpAsq. In addition, since ΓpAtq � AtzBt,

this implies that ΓpAtq X Bs � H, which in turn implies that at R Bs. In fact, this simple

observation completely characterizes whether a data set is consistent with a CFP model.

CFP condition: A selection profile
�
xpqq

�Q
q�1

obeys CFP condition, if for every s, t P T ,

As � At ùñ at R Bs. (14)

Theorem 2. A data set O � tpat, AtqutPT is rationalizable by a limited consideration model

with CFP, if and only if there exists a selection profile
�
xpqq

�Q
q�1

obeying CFP condition.

The proof of Theorem 2 is parallel to that of Theorem 1. The necessity of CFP condition

has already been discussed, and the proof for sufficiency is constructive. First of all, given

a selection profile
�
xpqq

�Q
q�1

that obeys CFP condition, we can construct tBtutPT . Then we
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define a consideration mapping Γ such that for every A � X,

ΓpAq � A
I ¤
t:At�A

Bt. (15)

The substantial parts of the proof are to show that Γ constructed as above obeys CFP, and

that the binary relation ¡� defined as x2 ¡� x1 if x2 � at, x1 P ΓpAtq, and x2 � x1 is acyclic,

which are proved in Appendix I.

Lemma 4. The consideration mapping defined as (15) obeys CFP.

Lemma 5. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T , x1 P ΓpAtq,

and x2 � x1. Then, ¡� is acyclic and for every t P T , at P ΓpAtq.

The rest of the proof is again similar to the case of Theorem 1, just extending the transitive

closure of ¡� to a strict preference ¡ by using Szpilrajn’s theorem, which is easily proved to

rationalize a data set by the limited consideration model pΓ,¡q, where Γ obeys CFP.

Example 2 (continued). Consider the data set in Example 2, and recall that there are four

cycles with respect to the direct revealed preference ¡R: x1 ¡
R x2 ¡

R x1;x1 ¡
R x3 ¡

R

x1;x2 ¡
R x4 ¡

R x2; and x3 ¡
R x5 ¡

R x3. We show that selection profile rx1, x1, x2, x3s

actually succeeds in satisfying CFP condition. In fact, the relevant sets tBtutPT are summarized

in Table 1. Looking at the data set and Table 1, one can confirm that CFP condition is satisfied.

In particular, we have A4 � A2 and A5 � A3, but a2 � x2 R B4 and a3 � x3 R B5.

Recall that the selection profile rx1, x1, x2, x3s obeys both AFP condition and CFP condition.

Then, a natural question would be: is this data set rationalizable by a limited consideration

model with AFP+CFP? In fact, the answer is no, which motivates us to provide a revealed

preference test for a model with AFP+CFP.

4.3 AFP+CFP condition

In the rest of this section, we deal with a revealed preference characterization of limited

consideration models with AFP+CFP. Clearly, if a data set O � tpat, AtqutPT is rationalizable

by an AFP+CFP model, then it is also consistent with both AFP model and CFP model.

Hence, by Theorems 1 and 2, such a data set must obey both AFP condition and CFP

condition. However, as we shall show in the example at the end of this subsection, the joint
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of AFP condition and CFP condition is insufficient to characterize the observable restrictions

of such models.

To clarify a necessary condition, let O � tpat, AtqutPT be a data set collected from an

agent obeying a limited consideration model with AFP+CFP. That is, an agent has a strict

preference ¡ on X and a consideration mapping Γ that obeys AFP+CFP. Similar to the

previous cases, we may assume that O contains cycles with respect to ¡R, and let
�
xpqq

�Q
q�1

be a selection profile as specified in Proposition 1. Corresponding to this selection profile,

tBtutPT is determined as in (9). Since O must obey AFP, together with ΓpAtq � AtzBt by

Proposition 1, it holds that ΓpAtq � ΓpAtzBtq for every t P T . In fact, as a slight extension of

this, it holds for s, t P T that

pAszBsq � At ùñ ΓpAtq � AtzBs. (16)

To see (16), we employ both AFP and CFP. First, notice that if pAszBsq � At holds, then

there exist some sets C � Bs and D � XzAs such that At � rpAszBsq Y C Y Ds.10 Since,

obviously, pAtXAsq � rpAszBsqYCs, it holds that pAszBsq � pAtXAsq � As. Then, gathering

together with ΓpAsq � ΓpAszBsq, AFP implies that ΓpAtXAsq � ΓpAszBsq. In addition, since�
ΓpAtq X pAt XAsq

�
� pΓpAtq X Asq, it follows from CFP that pΓpAtq X Asq � ΓpAt X Asq.11

Gathering together with ΓpAt X Asq � ΓpAszBsq, we have pΓpAtq X Asq � AszBs. Since

Bs � As, we conclude that ΓpAtq X Bs � H, which shows that (16) holds. As long as an

agent obeys an AFP+CFP model, it must hold that at P ΓpAtq, and the relationship (16)

impose a restriction on the relationship between chosen alternatives and selection points (or

Bt’s corresponding to them):

pAszBsq � At ùñ at R Bs. (17)

As a matter of fact, the conclusions in (16) and (17) have further room for extension,

which play a key role in characterizing AFP+CFP. We start from extending (16). Looking at

the argument in the preceding paragraph, one can see that the facts of ΓpAsq � AszBs and

Bs � As are cornerstones, and once they are known, (16) follows from AFP and CFP. That

is, even for general subsets A1, A2 � X, if both ΓpA1q � A1zV and A1zV � A2 hold for some

10The sets C and/or D may be empty.
11This is seen by applying CFP for pAt XAsq � At, which results in rΓpAtq X pAt XAsqs � ΓpAt XAsq. Then we

can combine this with rΓpAtq X pAt XAsqs � pΓpAtq XAsq to obtain the desired result.
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V � A1, then ΓpA2q � A2zV must hold. We state this as a lemma for future reference. The

lemma can be shown through the same logic as deriving (16) by letting As � A1, Bs � V , and

At � A2

Lemma 6. Let A1, A2 � X and Γ be a consideration mapping satisfying AFP+CFP. If both

ΓpA1q � A1zV and A1zV � A2 hold for some V � A1, then ΓpA2q � A2zV .

Now we turn to extending (17) with help of Lemma 6. We start from going one step further:

consider the situation where for some r, s, t P T , it holds that rpAr YAsqzpBr YBsqs � At.

Note that we have pArzBrq � pArYAsq. Then, we can apply Lemma 6 by setting A1 � Ar, V �

Br, and A2 � pAr Y Asq, which results in ΓpAr Y Asq � pAr Y AsqzBr.12 Similarly, since we

have pAszBsq � pAr Y Asq, it follows that ΓpAr Y Asq � pAr Y AsqzBs. Combining, we have

ΓpArYAsq � pArYAsqzpBrYBsq. Then, since we assumed that rpAr YAsqzpBr YBsqs � At,

we can again apply Lemma 6 by setting A1 � pAr Y Asq, V � pBr Y Bsq, and A2 � At. This

yields ΓpAtq � AtzpBr YBsq, and we conclude that

rpAr YAsqzpBr YBsqs � At ùñ ΓpAtq � AtzpBr YBsq. (18)

Clearly, (18) is an extension of (16), and the former derives an extenstion of (17) such that

rpAr YAsqzpBr YBsqs � At ùñ at R Br YBs. (19)

Then, by inductive argument, we can, in turn, extend (18) and (19) for any subset τ � T

such that
��

rPτ A
r
H�

rPτ B
r
�
� At. Namely, by the extension of (19), there must exist a

selection profile obeying the following condition.

AFP+CFP condition: A selection profile
�
xpqq

�Q
q�1

obeys AFP+CFP condition, if for every

t P T and any set of indices τ � T ,

¤
rPτ

Ar
I¤
rPτ

Br � At ùñ at R
¤
rPτ

Br. (20)

Theorem 3. A data set O � tpat, AtqutPT is rationalizable by a limited consideration model

with AFP+CFP, if and only if there exists a selection profile
�
xpqq

�Q
q�1

obeying AFP+CFP

condition.

12Note that we have ΓpArq � ArzBr since the selection profile is chosen as such, Br � Ar by definition, and
pArzBrq � pAr YAsq is obvious. Thus the requirements in Lemma 6 are satisfied.
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The substantial part of the proof is again the sufficiency part. Similar to Theorems 1 and

2, we construct a pair of a consideration mapping and a strict preference that rationalizes O

based on a selection profile
�
xpqq

�Q
q�1

obeying the condition and the corresponding tBtutPT . To

define Γ, we need the following set of indices for every A � X:

τpAq � max

#
τ � T :

¤
rPτ

Ar
I¤
rPτ

Br � A

+
. (21)

Then, by using τpAq, define Γ such that

ΓpAq � A
I ¤
rPτpAq

Br. (22)

Obviously, in order for the above definition to be well-defined, τpAq must be uniquely

determined for every A � X, which is actually the case as proved in Appendix I.

Lemma 7. For every A � X, τpAq is uniquely determined.

Once we construct a consideration mapping as above, then the rest of proof follows a quite

similar path to Theorems 1 and 2. The following two lemmas are proved in Appendix I, and

the proof completes by extending ¡� using Szpilrajn’s theorem.

Lemma 8. The consideration mapping defined as (22) obeys AFP+CFP.

Lemma 9. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at, x1 P ΓpAtq, and x2 � x1.

Then ¡� is acyclic and for every t P T , at P ΓpAtq.

Finally, we point out that the joint of AFP condition and CFP condition does not work as

a necessary and sufficient condition for a data set to be consistent with an AFP+CFP model.

In the example below, a data set contains a selection profile obeying both AFP condition

and CFP condition, and hence it is rationalizable respectively by an AFP model and a CFP

model. However, it does not contain any selection profile obeying AFP+CFP condition, or

equivalently, it is not rationalizable by any AFP+CFP model. This implies that, in general,

the joint of two theoretical hypotheses is not necessarily tested by the joint of tests for each

hypothesis.

Example 2 (continued). Consider the data set given in Example 2, and recall that there are

four cycles with respect to the direct revealed preference ¡R: x1 ¡
R x2 ¡

R x1; x1 ¡
R x3 ¡

R x1;
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x2 ¡
R x4 ¡

R x2; and x3 ¡
R x5 ¡

R x3. It is shown in the examples above that selection

profile rx1, x1, x2, x3s actually succeed in satisfying both AFP condition and CFP condition.

However, we claim that this profile violates AFP+CFP condition. The relevant sets for this

selection profile are summarized in Table 1. Since tx1u � A1zB1 � A2 and x2 � a2 P B1,

(17) is violated, let alone AFP+CFP condition. In addition, as shown below, selection profile

rx1, x1, x2, x3s is the only profile that obeys both AFP condition and CFP condition. For a

selection profile to satisfy CFP condition, it can contain neither x4 nor x5. To see this,

suppose that xp3q � x4. Then we have yp3q � x2, B4 � tx2u, A4 � A2, and a2 � x2 P B4,

which violates CFP condition. Setting xp4q � x5 leads to a similar violation of CFP condition.

Therefore, we must have xp3q � x2 and xp4q � x3 in the profile. Furthermore, if a selection

profile satisfies AFP condition, it cannot have x2 appear twice, or x3 appear twice in the profile.

To see this, consider profile rx2, x1, x2, x3s. Then we have B2 � tx1, x4u, and thus

tx2, x6u � A2zB2 � A4 � A2 � tx1, x2, x4, x6u,

but x2 � a2 � a4 � x4, which is a violation of AFP condition. The case of profile rx1, x3, x2, x3s

leads to a similar violation of AFP condition.13

5 Testing rational shortlist methods

If a data setO � tpat, AtqutPT is collected from an agent obeying a (transitive) rational shortlist

method pΓ,¡q, then it is trivially consistent with a CFP model (AFP+CFP model). However,

it is not difficult to find a data set that is consistent with CFP condition (AFP+CFP condition),

but inconsistent with any RSM (TRSM) model. Indeed, for a data set to be rationalizable by

an RSM model, it must hold that for every r, s, t P T with Ar � As YAt,

as � at ùñ ar � as � at, (23)

which is not guaranteed by the existence of a selection profile obeying CFP condition/AFP+CFP

condition.14 In this section, we provide a test for RSM (TRSM) model.

13One can confirm that this example is consistent with the straightforward adaptation of LC-WARP�, a revealed
preference characterization of an AFP+CFP model for a choice function shown in Lleras et al. (2015).

14If an agent obeys rational shortlist method, ΓpArq � ΓpAsq Y ΓpAtq is obvious. In addition, x � at � as implies
that no element in As Y At � Ar can dominate x with respect to the first step preference, and x dominates with
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Suppose that an agent has two preferences ¡1 and ¡, where the former is merely acyclic

while the latter is a strict preference, and that a consideration mapping Γ is defined as (7).

Similar to the previous models, we may assume that a data set O collected from such an

agent contains cycles with respect to ¡R, and let
�
xpqq

�Q
q�1

be a selection profile as specified in

Proposition 1. Corresponding to this selection profile, tBtutPT is determined as in (9). Recall,

by the definition of selection points in Proposition 1, for every x1 P Bt we have x1 R ΓpAtq,

which means that there exists some x2 P Atzx1 such that x2 ¡1 x1. On the other hand, x1 P Bt

means that x1 is a chosen alternative in some observed feasible set, say As. Then, it must follow

that x1 £R x2; otherwise, since we have x2 ¡1 x1, the definition of Γ will require x1 R ΓpAsq,

which contradicts that x1 is the chosen alternative at As.

Given the discussion above, we can define a binary relation � on X such that: x2 � x1 if

x1 P Bt for some t P T , x2 P Atzx1, and x1 £R x2. Note that for every x1 P Bt, there exists

at least one x2 P Atzx1 with x2 � x1 for which x2 ¡1 x1 actually holds. Loosely speaking, �

can be seen as a broad guess of the first step preference ¡1. In addition, the acyclicity of ¡1

requires that we can always find a selection �1 � � that is acyclic, and for every t P T and

x1 P Bt, there exists some x2 P Atzx1 with x2�1 x1. Furthermore, if the first step preference ¡1

is assumed to be transitive, a selection �1 has to be chosen so that

for every x1 P Bt and z1, ..., zk, x2 �1 z1 �1 � � � �1 zk �1 x1 ùñ x1 £R x2. (24)

Now, �1 is a “correct” guess of the first step preference, and if transitivity is imposed, the

above implies that x2 ¡1 x1. Hence, if x1 ¡R x2 were to hold, then it leads a contradiction that

x1 is deleted from a consideration set from which it is actually chosen. In fact, this observation

is summarized in the conditions below, and plays a key role to characterize a data set that is

rationalizable by an RSM (TRSM) model.

RSM condition: A selection profile
�
xpqq

�Q
q�1

obeys RSM condition, if for the corresponding

tBtutPT , there exists an acyclic selection �1 of �, where for every t P T ,

for every x1 P Bt, there exists x2 P At with x2 �1 x1. (25)

TRSM condition: A selection profile
�
xpqq

�Q
q�1

obeys TRSM condition, if for the correspond-

respect to the second step preference all other elements in ΓpArq � ΓpAsq Y ΓpAtq.
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ing tBtutPT , there exists an acyclic selection �1 of � that obeys (24) and (25).

Theorem 4. A data set O � tpat, AtqutPT is rationalizable by an RSM model, if and only if

there exists a selection profile
�
xpqq

�Q
q�1

obeying RSM condition.

Theorem 5. A data set O � tpat, AtqutPT is rationalizable by a TRSM model, if and only if

there exists a selection profile
�
xpqq

�Q
q�1

obeying TRSM condition.

The proofs of the above theorems are almost identical and the necessity parts of them have

been already discussed. Hence, we only prove the sufficient parts of them. Using an acyclic

selection �1 of �, define Γ as

ΓpAq � tx P A : Ex1 P A such that x1 �1 xu. (26)

Note that the selection �1 is acyclic, so we use it as a first step preference for the case of

Theorem 4. If we can find �1 so that it obeys (24) in addition to (25), then we use the

transitive closure of it, say, �2 as a first step preference and define Γ by using it instead of

�1. Note further that ΓpAtq � AtzBt, by the definition of �1 and the construction of Γ. The

remaining substantial parts of the proof are to show that at P ΓpAtq for every t P T , and the

binary relation ¡� defined as x2 ¡� x1 if x2 � at, x1 P ΓpAtq, and x2 � x1 is acyclic, which

are proved in Appendix I. In the following lemma, Γ is defined by (26) in testing RSM model,

while �1 in (26) should be replaced with �2 in testing TRSM model.

Lemma 10. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T ,

x1 P ΓpAtq, and x2 � x1. Then ¡� is acyclic, and for every t P T , at P ΓpAtq.

The rest of the proof is to extend the transitive closure of ¡� to a strict preference by using

Szpilrajn’s theorem. Then it can easily be seen that the data set is rationalized by an RSM

(TRSM) model pΓ,¡q.

Remark: In testing TRSM condition, the search for an acyclic selection �1 of � that obeys

(24) and (25) can be done by way of a simple 0-1 integer programming (see Appendix II for

the formulation). In the simulation in Section 6, we actually use it, which very well works. In

principle, the RSM model �1 can also be searched using a similar 0-1 integer programming.

However, requiring acyclicity of �1 in the programming can be computationally heavy, so
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applying 0-1 integer programming for RSM may not be practical.15

It is shown by Manzini and Mariotti (2007) that an RSM model can be characterized by a

combination of two axioms on a data set, namely, Weak WARP and Expansion (see Appendix

III). The former is implied when the consideration mapping obeys CFP. The latter requires

that for every A1, A2 � X, if x � fpA1q � fpA2q, then x � fpA1 Y A2q, where f is a choice

function. Given this, one may be tempted to consider that an RSM model is tested by the

joint of CFP condition and (23), a straightforward partial-observation version of Expansion.

The following example shows that this is not the case, i.e. we present a data set that obeys

CFP condition and (23), but violates RSM condition. A similar example can be found for the

joint of AFP+CFP condition and (23).

Example 3. Let X � tx1, x2, x3, x4, x5, x6u and consider a data set of six observations as

below:

t 1 2 3 4 5 6
At tx1, x2, x4u tx1, x2u tx3, x4, x6u tx3, x4u tx2, x5, x6u tx5, x6u
at x1 x2 x3 x4 x5 x6

It can be seen that Expansion is trivially satisfied, because the chosen alternatives are all

different. Note that there are four cycles with respect to ¡R: x1 ¡
R x2 ¡

R x1; x3 ¡
R x4 ¡

R x3;

x5 ¡
R x6 ¡

R x5; and x1 ¡
R x4 ¡

R x3 ¡
R x6 ¡

R x5 ¡
R x2 ¡

R x1. We first show that RSM

condition cannot be satisfied by any selection profile. Consider the cycle x1 ¡
R x2 ¡

R x1. If

we choose x2 to be a selection point, we will have a1 � x1 P B2. However, then, there does

not exist any x P A2 such that x1 £
R x, and we cannot define � for x1. Therefore, we need

to choose x1 as the selection point for this cycle. By the same logic, we must choose x3 and

x5 to be the selection points of the second and third cycles respectively. Then we must have

x4 � x2, x6 � x4, and x2 � x6, and it will be impossible to find an acyclic selection of �. CFP

condition is satisfied by the selection profile rx1, x3, x5, x3s. Note that the only set inclusions

of feasible sets that we have are At � At�1 for t � 2, 4, 6. On the other hand, since Bt � H

for t � 2, 4, 6, CFP condition is trivially satisfied.

15For RSM, we applied a different strategy to find a suitable selection �1, of which the detail is available from the
authors upon request.
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6 Simulation: relative observable restrictions

6.1 Setting

In this section, the revealed preference tests in Sections 4 and 5 are applied to randomly

generated data sets to compare relative strength of observable restrictions between models,

not only between models that are theoretically interdependent, but also between models that

are theoretically independent.. We generated 10,000 random data sets with |X| � 10, |T | �

20,min |At| � 2, and max |At| � 8. Firstly, we randomly generated 100 variations of feasible

sets An :� tAtnutPT for n � 1, . . . , 100: fixing n, in generating each Atn, we set |Atn| P t2, . . . , 8u

following a uniform distribution over the set of natural numbers t2, . . . , 8u, and then choose

|Atn| elements from X following a uniform distribution over X. We also require that At
1

n � At
2

n

for t1 � t2. For each profile of feasible sets An � tAtnutPT , a random choice data set tati,nutPT

is generated for i � 1, . . . , 100: fixing n and i, ati,n is chosen following a uniform distribution

over Atn for every t P T .

Consequently we have a random choice data set Oi,n � tpati,n, A
t
nqutPT for i � 1, . . . , 100

for which we apply our revealed preference tests. Note that we randomize feasible sets, as

well as choices over them, since, in general, observable restriction of a specific model depends

on the structure of the feasible sets An � tAtnutPT . For example, if As X At � H for every

s, t P T , then it is impossible to satisfy the LHS of (11) in AFP condition, and the AFP model

is trivially nonrefutable. For each Oi,n � tpati,n, A
t
nqutPT , we tested AFP, CFP, AFP+CFP,

RSM, and TRSM, as well as SARP. We derived the pass rates for these tests under each profile

of feasible sets, as well as the average pass rates of them over 100 profiles of feasible sets. In

addition, we apply straightforward adaptations of existing full-observation based tests to our

partially observed data sets to see if they could approximate necessary and sufficient conditions

(see Appendix III for details of full observation based tests).

Our simulation can be regarded as Bronars’ test in the context of limited consideration

models, and one can measure observable restriction of each model by using its pass rate. Indeed,

if we collect a sufficiently large number of random choices, then the pass rate approximates

the proportion of choices that are model-consistent to all logically possible choices. If this

value is very close to 1, then the model in question is very hard to refute, or its observable

restriction is weak. As shown by Selten (1991) and Beatty and Crawford (2011), this measure

of observable restriction plays a key role in considering the measure of plausibility of a model
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test our tests full obsv. tests
SARP 0 0
AFP 0.9927 0.9954
CFP 0.6298 0.6298

AFP+CFP 0.0396 0.6176
RSM 0.0259 0.5083

TRSM 0.0006 0.5050

Table 2: Average pass rates.

based on empirical or experimental data sets. Given empirical or experimental data sets,

Selten’s index evaluates a model by the difference of the pass rate calculated from actual data

sets and the proportion of model-consistent choices to all logically possible choices. Intuitively,

a “nice” model in terms of Selten index is a model with higher pass rate and stronger observable

restrictions.16 Since the pass rate from uniformly generated data sets approximates observable

restrictions of models, practically, one can calculate Selten’s index as the difference of the pass

rate of actual data sets and the pass rate of randomly generated data sets. We postpone the

issue of comparing models by Selten indices using some empirical/experimental data as an

interesting future research.

6.2 Results

In Table 2, the average pass rates of 100 different profiles of feasible sets (10,000 agents)

are summarized. The left hand side column gives the pass rates of revealed preference tests

presented in our paper, and the right column gives the pass rates of the corresponding straight-

forward adaption of full observation version tests existing in the literature.

The pass rate results show that the AFP model is extremely permissive, letting more than

99% of the random agents pass the test, and CFP model is also quite permissive. On the other

hand, we can say that that for AFP+CFP, RSM, and TRSM models, observable restrictions

are reasonably strong. What is striking is that while more than 60% of all agents passed both

AFP and CFP, the pass rate of AFP+CFP model is significantly lower (lower than 0.04). This

shows that the combination of the two models lead to a model that is much more restrictive,

which is an observation that the theoretical results do not necessarily show. Our simulation

also shows us that, in our setting, observable restriction of RSM model is slightly stronger

16It is known that this simple index satisfies several nice axioms. See Selten’s original paper for details.
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Figure 1: Histograms.

than that of AFP+CFP model. Also, we can loosely say that the full observation version tests

may be a good approximation for AFP and CFP models, even when we deal with a partially

observed data set. Meanwhile, for AFP+CFP, RSM, and TRSM models, the gaps between

our tests and the full observation tests are large.

Note that the agents can be partitioned into eight types: agent obeys either (i) TRSM;

(ii) RSM and AFP+CFP but not TRSM; (iii) RSM but not AFP+CFP; (iv) AFP+CFP but

not RSM; (v) CFP and AFP but neither AFP+CFP nor RSM; (vi) only CFP; (vii) only

AFP; (viii) none of the models. In our simulation, every type consists of a positive number of

agents, which means that, under our setting, the theoretical independence between models is

maintained.17

Figure 1 visually summarizes the distributions of pass rates for each test, where the hori-

zontal axis is the pass rate given the profile of feasible sets, running from 0 to 1 with bin width

0.05. The vertical axis is the frequency of profiles of feasible sets of which the pass rates drop

in each bin. It shows that the pass rate for CFP test has a large variance depending on the

structure of feasible sets, while pass rates for other models are more accumulated to around

17Out of 10,000 agents, the distribution of agents’ type is as follows: (i) 24 agents, (ii) 4 agents, (iii) 186 agents,
(iv) 369 agents, (v) 5575 agents, (vi) 140 agents, (vii) 3576 agents, and (viii) 126 agents.
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either 0 and 1.

We conclude this subsection with a remark concerning computation time. Though it varies

across agents, loosely speaking, tests are reasonably fast except for AFP, and almost all tests for

10,000 agents finish within two weeks. For the AFP test, we first applied our test for all agents,

and then for the agents that took too much time, we applied the 0-1 integer programming

version of the test by De Clippel and Rozen (2014). For each agent, on average, it took 3.12

seconds to write out cycles with respect to ¡R, 87.20 seconds for AFP, 0.96 seconds for CFP,

6.59 seconds for AFP+CFP, 0.85 seconds for RSM, and 0.01 seconds for TRSM. For the AFP

test, firstly we first gave at most 1 second for each agent in applying our test. As a result, the

calculation finished for 9,114 agents, which took an average of 0.84 seconds per agent. Then,

for the remaining 886 agents we applied the method of De Clippel and Rozen (2014). The

latter took an average of 974.65 seconds per agent, but faster than continuing our backgracking

for these agents.18

6.3 Backtracking procedure

Here we explain how we use the backtracking method in searching for a selection profile

obeying the conditions in our revealed preference tests. Suppose that we have a data set

O � tpat, AtqutPT which has Q ¡ 0 cycles with respect to the direct revealed preference, and

let us consider a limited consideration model M P {AFP, CFP, AFP+CFP, RSM, TRSM}.

As already mentioned in Section 3, if the data set has no cycle, then it is rationalized by the

rational choice model, which is a subclass of the models referred to above.

Before going into the description of our method, let us define some additional concepts.

Fix Q ¤ Q and consider a “partial” selection profile
�
xpqq

�Q
q�1

. Define for every t P T ,

Bt
Q

��
xpqq

�Q
q�1



�
!
ypqq P At : at � xpqq, where 1 ¤ q ¤ Q

)
, (27)

which are counterparts of (9) corresponding to a “partial” selection profile of length Q   Q.19

With a slight abuse of terminology, we say that a selection profile
�
xpqq

�Q
q�1

obeys (violates) M

condition, if obeys (violates) M condition based on the corresponding tBt
Q
utPT . For example,

18The computers that we used for calculation are standard computers: the processors vary from 1.20 GHz Intel
Core i5 to 3.3 GHz Intel Core i7, and RAM vary from 4 GB to 16 GB.

19We omit the argument and denote these sets by Bt
Q

when there is no risk of confusion.
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for Q, we say that a partial selection profile
�
xpqq

�Q
q�1

obeys AFP condition, if for every s, t P T ,

�
AszBs

Q

	
Y
�
AtzBt

Q

	
� pAs XAtq ùñ as � at. (28)

Parallel terminology is used for other models as well.

An important fact is that a “longer” selection profile is harder to satisfy the conditions in

revealed preference tests. To illustrate this more in detail, let us consider the case of AFP.

Suppose that for some Q   Q, there is a selection profile
�
x̄pqq

�Q
q�1

that fails AFP condition.

That is, there exist some r, s P T such that pArzBr
Q
q Y pAszBs

Q
q � pAr X Asq, but ar � as.

Now consider a selection profile rx̄p1q, . . . , x̄pQq, xpQ�1qs, and the corresponding sets tBt
Q�1

utPT .

Then, as seen from (27), it holds that Bt
Q
� Bt

Q�1
for every t P T . This in turn implies that

pArzBr
Q�1

q Y pAszBs
Q�1

q � pAr X Asq holds, and selection profile rx̄p1q, . . . , x̄pQq, xpQ�1qs fails

AFP condition. Hence, there is no hope for any partial or complete selection profile containing�
x̄pqq

�Q
q�1

to obey M condition.

In fact, the above remains to be true for other models. To see this, fix some Q1   Q and

selection profile
�
x̄pqq

�Q1

q�1
, and consider any selection profile of Q2p¡ Q1q length

�
xpqq

�Q2

q�1
that

contains
�
x̄pqq

�Q1

q�1
. Then by definition, Bt

Q1 � Bt
Q2 for every t P T . This implies that (i) the

LHS is more permissive in AFP condition; (ii) the RHS is more restrictive in CFP condition;

(iii) the LHS is more permissive in AFP+CFP condition; (iv) � is stronger and thus more

difficult to find an acyclic (asymmetric and transitive) selection of � in RSM (TRSM) condi-

tion. All of them imply that a longer selection profile makes each condition more restrictive.

In particular, if a partial selection profile
�
x̄pqq

�Q
q�1

fails to obey M condition, no complete

selection profile containing it can obey M condition.

Due to the above observation, for every model M, we can search for a successful selection

profile cycle-by-cycle. The big picture of our procedure is as follows. We start from searching

the single-element selection profile rxp1qs from the first cycle so that it obeys M condition. If

there is no such selection, then we can immediately conclude that the data set is inconsistent

with the model in question. If we find a successful partial selection profile
�
xpqq

�pQ�1q

q�1
for

Q ¥ 2, then we can concentrate on finding out a suitable selection point from Q-th cycle. If

there is no such selection, then we should discard the current
�
xpqq

�pQ�1q

q�1
immediately and go

back to earlier cycles to update it. The detail of our procedure is summarized as the flowchart

in Figure 2, and we provide an extended explanation below. The example in the end of this
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subsection may be helpful to follow it.

Recall that our ultimate goal is to find a selection profile
�
xpqq

�Q
q�1

that obeys M condition.

In our procedure, we search for such a selection profile cycle-by-cycle using the following

variables: Q (1 ¤ Q ¤ Q) indicating the cycle we are looking at, and kq indicating for every

1 ¤ q ¤ Q, which element in q-th cycle should be considered when Q � q.

Initially, we set kq � 1 for all q and Q � 1. So, we start from choosing the first element of

the first cycle as xp1q and check if the single-element selection profile
�
xp1q

�
obeys M condition.

If it is the case, then we update Q from 1 to 2 and go to the next step, which is explained

in the succeeding paragraph, with keeping k1 � 1. If rxp1qs fails to obey M condition, then

we update kq from 1 to 2 and choose the second element of the first cycle as xp1q and test M

condition for updated rxp1qs. Repeating this, if we get rxp1qs obeying M condition at some k1,

then we go to Q � 2 with keeping k1 at that value. On the other hand, if the update of k1

continues up to k1 � K1, which is the last element from the first cycle, and still we cannot get

rxp1qs obeying M condition, then we set Q � 0 and conclude that the data set in question is

not rationalizable by M model.

If the procedure reaches some 2 ¤ Q ¤ Q� 1, then it means that we successfully found a

partial selection profile rxp1q, xp2q, ..., xpQ�1qs obeying M condition. Though, for every 1 ¤ q ¤

Q, the value of kq may vary depending on history, it does not affect the following argument.

The procedure adds xpQq � xkQ to the existing selection profile to get rxp1q, xp2q, ..., xpQ�1q, xQs.

If this new selection profile obeys M condition, we go to pQ � 1q-th cycle with keeping the

value of kQ as it stands. Otherwise, we redefine kQ by adding 1 to the previous kQ, and

reexamine the selection profile with xpQq being updated to the redefined xkQ . Again, if we find

a successful xkQ at some kQ, we proceed to pQ � 1q-th cycle with keeping its value. Suppose

that we cannot find any successful selection point xpQq even when kQ reaches KQ, the last

element from the Q-th cycle. Then, we go back to the largest positive Q1   Q with kQ1   KQ1 ,

i.e., Q is rewinded to Q1. In doing so, for all q ¡ Q1, kq is reset to 1 and kQ1 is updated by

adding 1 to its present value. When we cannot find any such Q1, then, we just set Q � 0 and

conclude that the data set is inconsistent with M model.

At the conclusion of the algorithm, we have either Q � Q or Q � 0. In the former case,

we have a selection profile
�
xpqq

�Q
q�1

that obeys M condition. If the latter case is reached, we

conclude that the data set is not rationalizable by M model. Note that, by the construction

of our procedure, Q � 0 is reached, if and only if there exists some Q ¡ 0 for which any
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Figure 2: Flowchart of backtracking.

(partial) selection profile
�
xpqq

�Q
q�1

cannot satisfy M condition. Recalling the fact that a

longer selection profile is harder to obey the conditions, this indeed implies that the data set

cannot be rationalized by M model.

Remark: One advantage of the backtracking approach is that we may be able to determine,

at an early stage of the process of searching for a selection profile, that a data set fails the test.

Due to this feature, calculation time does depend on how we order the cycles. We suggest that

the cycles are sorted so that shoretr cycles come first: whenever q1   q2, q1-th cycle is weakly

shorter than q2-th cycle. The cycles in Example 3 are sorted in this way. Whenever this takes

too much calculation time, it seems natural to list ‘problematic’ cycles first. ‘Problematic’

cycles are those such that a (partial) selection profile fails when adding a selection point at

that cycle. This may allow us to determine that a data set fails the test at an early stage of

the backtracking process (and we actually adopt this type of strategy).

Example 3 (continued). Consider the data set in Example 3. Table 3 shows the procedure of

which we determine that the data set of Example 3 fails RSM condition. Recall that the data

set has four cycles (we number cycles in the following order):

1. x1 ¡
R x2 ¡

R x1

2. x3 ¡
R x4 ¡

R x3

3. x5 ¡
R x6 ¡

R x5

4. x1 ¡
R x4 ¡

R x3 ¡
R x6 ¡

R x5 ¡
R x2 ¡

R x1
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Q pk1, k2, k3, k4q selection profile RSM condition
1 p1, 1, 1, 1q rx1s PASS
2 p1, 1, 1, 1q rx1, x3s PASS
3 p1, 1, 1, 1q rx1, x3, x5s FAIL
3 p1, 1, 2, 1q rx1, x3, x6s FAIL
2 p1, 2, 1, 1q rx1, x4s FAIL
1 p2, 1, 1, 1q rx2s FAIL
0 H STOP

Table 3: Backtracking process applied to Example 3 for testing RSM.

Following our backtracking procedure, we first set Q � 1 and pk1, k2, k3, k4q � p1, 1, 1, 1q to

see if rx1s passes RSM condition, which is actually affirmative. Then, we proceed to the second

cycle by setting Q � 2 and check if rx1, x3s obeys RSM, which is again the case. Then, we set

Q � 3 and move to the third cycle to check if rx1, x3, x5s is consistent with RSM, which is,

in turn, negative. In this case, we keep Q � 3 and update k3 from 1 to 2 in order to test if

rx1, x3, x6s passes RSM, which is again negative.

Now, we cannot find any other element from the third cycle obeying RSM, as long as rx1, x3s

is selected from the first and second cycles. So we now rewind Q to 2 and change k2 from 1

to 2 to change a selection from the second cycle (at this stage, k3 is reset to 1). Looking at

rx1, x4s, it fails RSM, and now we cannot find any successful selection profile as long as the

selection from the first cycle is x1.

Since there is no other possibility in the second cycle, we have to go back to Q � 1 and

reexamine the selection from the first cycle. The remaining possibility is rx2s, but it fails to

obey RSM. Then Q is set to 0, which means that the data set cannot be rationalized by RSM.

Appendix I: Proofs of Lemmas

Proof of Lemma 1

Suppose that for some s, t P T both AtzBt � A � At and AszBs � A � As simultaneously

hold. Then, it follows that pAtzBtq Y pAszBsq � pAt XAsq. By AFP condition, we must have

at � as, and then Bt X A � Bs X A follows from the assumption that A � pAt X Asq and the

definition of sets Bt, Bs. Thus we conclude that AzBt � AzBs.
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Proof of Lemma 2

We show that Γ as defined in (12) obeys AFP. Consider A � X and x P A such that x R ΓpAq.

This implies that there exists some t P T such that AtzBt � A � At and x P Bt. Note

that, by definition, ΓpAq � AzBt. Now consider the set Azx. Since x P Bt, it follows that

AtzBt � Azx � At, and thus ΓpAzxq � pAzxqzBt. Recalling that x P Bt, it follows that

ΓpAzxq � pAzxqzBt � AzBt � ΓpAq.

Proof of Lemma 3

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: x1 ¡� x2 ¡� � � � ¡� xL ¡� x1. Note that x2 ¡� x1 implies x2 ¡R x1,

which follows by the way these binary relations are defined. Therefore, the cycle above implies

x1 ¡R x2 ¡R � � � ¡R xL ¡R x1. Then, there exists a selection point x`, i.e. xpqq � x` and

ypqq � x`�1 for some q P t1, . . . , Qu. Note that by definition of the direct revealed preference,

there must exist some t P T such that at � xpqq and ypqq P At. Moreover, definitions of a

selection point and sets tBtutPT imply that x`�1 � ypqq P Bt for such t P T , which in turn

implies x`�1 R ΓpAtq. Hence it is impossible to have x` � at ¡� x`�1, and we conclude that a

cycle with respect to ¡� cannot exist.

The fact that at P ΓpAtq for every t P T follows directly from AFP. To see this, suppose

not. Then there exists some s P T such that AszBs � At � As and at P Bs. However, this

is impossible, since AFP requires at � as, which contradicts at P Bs. Summarizing, we have

shown that ¡� is acyclic and at maximizes ¡� within the set ΓpAtq for every t P T .

Proof of Lemma 4

We show that Γ obeys CFP. Consider A1, A2 � X such that A1 � A2, and x P A1 with

x R ΓpA1q. Then it suffices to show x R ΓpA2q. Note that x R ΓpA1q implies that there exist

some t P T such that At � A1 and x P Bt. Since A1 � A2, we clearly have At � A2, and it

follows that x R ΓpA2q.

Proof of Lemma 5

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: x1 ¡� x2 ¡� � � � ¡� xL ¡� x1. Note that x2 ¡� x1 implies x2 ¡R x1,
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which follows by the way these binary relations are defined. Therefore, the cycle above implies

x1 ¡R x2 ¡R � � � ¡R xL ¡R x1. Then, there exists a selection point x`, i.e. xpqq � x` and

ypqq � x`�1 for some q P t1, . . . , Qu. Note that by definition of the direct revealed preference,

there must exist some t P T such that at � xpqq and ypqq P At. Moreover, definitions of a

selection point and sets tBtutPT imply that x`�1 � ypqq P Bt for such t P T , which in turn

implies x`�1 R ΓpAtq. Hence it is impossible to have x` � at ¡� x`�1, and we conclude that a

cycle with respect to ¡� cannot exist.

Next, we show that for every t P T , at P ΓpAtq. Suppose not. Then there exists some s P T

such that As � At and at P Bs. However, this is impossible, since CFP condition requires that

at R Bs. Summarizing, we have shown that ¡� is acyclic and at maximizes ¡� within the set

ΓpAtq for every t P T .

Proof of Lemma 7

Suppose by way of contradiction that τpAq is not unique, i.e. there exist τ1pAq � τ2pAq

that obey (21). Then
��

rPτ1pAq
Arz

�
rPτ1pAq

Br
	
� A and

��
rPτ2pAq

Arz
�
rPτ2pAq

Br
	
� A.

Hence
��

rPτ1pAq
Arz

�
rPτ1pAq

Br
	
Y
��

rPτ2pAq
Arz

�
rPτ2pAq

Br
	
� A, which can be expressed

as
��

rPτ1pAqYτ2pAq
Arz

��
rPτ1pAq

Br Y
�
rPτ2pAq

Br
	�

� A. Then, this implies

�
� ¤
rPτ1pAqYτ2pAq

Ar
I ¤
rPτ1pAqYτ2pAq

Br

�
� � A.

By defining τpAq � τ1pAq Y τ2pAq, we have τpAq � τipAq for i � 1, 2, which contradicts the

maximality of τ1pAq and τ2pAq.

Proof of Lemma 8

To see that Γ obeys CFP, consider A1, A2 � X with A1 � A2, and x P A1 such that x R ΓpA1q.

This means that x P
�
rPτpA1qB

r. Since τp�q is clearly monotonic, it follows that τpA1q � τpA2q,

and hence, x P
�
rPτpA2qB

r. This assures that x R ΓpA2q.

To see that Γ obeys AFP, take any A � X and any x P A with x R ΓpAq. This means that
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x P
�
rPτpAqB

r, which in turn implies that

�
� ¤
rPτpAq

Ar
I ¤
rPτpAq

Br

�

� Azx. (29)

The maximality and uniqueness of τp�q, combined with (29), imply τpAq � τpAzxq. On the

other hand, the monotonicity of τp�q implies τpAzxq � τpAq. Hence we have τpAq � τpAzxq.

Then, we have ΓpAzxq � pAzxqz
�
rPτpAzxqB

r � Az
�
rPτpAqB

r � ΓpAq.

Proof of Lemma 9

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: x1 ¡� x2 ¡� � � � ¡� xL ¡� x1. Note that x2 ¡� x1 implies x2 ¡R x1,

which follows by the way these binary relations are defined. Therefore, the cycle above implies

x1 ¡R x2 ¡R � � � ¡R xL ¡R x1. Then, there exists a selection point x`, i.e. xpqq � x` and

ypqq � x`�1 for some q P t1, . . . , Qu. Note that by definition of the direct revealed preference,

there must exist some t P T such that at � xpqq and ypqq P At. Moreover, definitions of a

selection point and sets tBtutPT imply that x`�1 � ypqq P Bt for such t P T and AtzBt � At.

Then we have t P τpAtq and thus x`�1 � ypqq P
�
rPτpAtqB

r, which in turn implies x`�1 R ΓpAtq.

Thus it is impossible to have x` � at ¡� x`�1, and we conclude that a cycle with respect to

¡� cannot exist.

Next, we show that for every t P T , at P ΓpAtq. In fact, this follows immediately from

AFP+CFP condition. For every t P T , we have
��

rPτpAtqA
r
H�

rPτpAtqB
r
	
� At. Then,

AFP+CFP condition requires at R
�
rPτpAtqB

r. Recalling the definition of Γ in (22), we have

at P ΓpAq for every t P T .

Proof of Lemma 10

To prove that ¡� is acyclic, suppose to the contrary, i.e. there is a cycle: x1 ¡� x2 ¡� � � � ¡�

xL ¡� x1. Since we have ¡��¡R, this cycle implies x1 ¡R x2 ¡R � � � ¡R xL ¡R x1. Then

there exists a selection point x`, and we have x`�1 P Bt for every t P T with at � x` and

x`�1 P At. By RSM condition, there exists some x P At such that x �1 x`�1, which in turn

implies x`�1 R ΓpAtq. Then it is impossible to have x` � at ¡� x`�1, and we conclude that ¡�

is acyclic.
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Now we show that at P ΓpAtq for every t P T . Assume that a data set obeys RSM condition

and Γ is defined as the set of maximal elements with respect to �1. By way of contradiction,

suppose that for some t P T , at R ΓpAtq. This means that there exists x P Atzat such that

x�1at, which in turn implies x�at. However, this is not possible, since x�at requires at £R x,

while we have at ¡R x. When a data set obeys TRSM condition and Γ is defined as the set

of maximal elements with respect to �2, at R ΓpAtq implies the existence of some x P Atzat

such that x �2 at. However, this is also impossible, since x �2 at implies the existence of a

sequence z1, z2, ..., zk such that x �1 z1 �1 � � � �1 zk �1 at, and by TRSM condition, at £R x,

which contradicts the assumption that x P At.

Appendix II: Formulation of integer programming

Here we describe how we can formulate AFP test in De Clippel and Rozen (2014) and our

RSM/TRSM test as 0-1 integer programming problems. Let us denote the integer problems

as C � x ¥ b, where matrix C and vector b are parameters determined from the data set

and/or a selection profile, and vector x is the vector of interest. Throughout this appendix, x

is restricted to be a 0-1 vector.

Before presenting the integer programming formulation of AFP test by De Clippel and

Rozen, we note again the statement of their result.

Theorem (De Clippel and Rozen, 2014): A data set O � tpat, AtqtPT u is rationalizable by

AFP model if and only if there exists a binary relation ¡� on X such that

(I) for every s, t P T such that as, at P As XAt,

Dx1 P AszAt : as ¡� x1 or Dx2 P AtzAs : at ¡� x2, (30)

(II) binary relation ¡� is acyclic.

In the problem C � x ¥ b, the matrix C and vector b are the factors for (I), and the

acyclicity of ¡� is required through additional constraints on the solution vector x. Specifically,

vector x � px11, x21, . . . , xn1, . . . , x1n, . . . , xnnq is interpreted as a vector that represents binary

relation ¡�: xij � 1 if xi ¡
� xj and xij � 0 otherwise. Matrix C and vector b are determined

once data setO is observed. Let I be a set of index-pairs ps, tq P T �T such that as, at P AsXAt,
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and let |I| � m. Then, C is a matrix with m rows (b is an m dimensional vector), where

each row (entry) represents the requirements that assure (30). Fix any row, say k-th row, and

suppose that indices s, t P T are the indices associated with this row. Note that the k-th row

of C is an n2 dimensional vector, which we denote as ck � pc11, c21, . . . , cn1, . . . , c1n, . . . , cnnq,

and bk (k-th entry of b) is a scalar. We omit the index k from entries of ck for the sake

of notational simplicity. Given a data set, ck is defined so that cij � 1 if (i) xi � as and

xj P AszAt, or (ii) xi � at and xj P AtzAs; and cij � 0 otherwise. That is, xi corresponds to

as (resp. at), and xj corresponds to x1 (resp. x2) in (I). Then, for (30) to hold, we must have

ck � x ¥ 1, so we can set bk � 1.

The additional constraints that require acyclicity of ¡� are straightforward: for every cyclic

sequence of indices J � pi, j, k, . . . , `, iq,

xij � xjk � � � � � x`i ¤ |J | � 2. (31)

While these acyclicity constraints are easy to understand, since we must write a constraint for

every cyclic sequence of indices, it may be computationally tough to list up: the number of

constraints explodes as the number of alternatives gets larger.

Example 4. Let X � tx1, x2, x3, x4u, and consider a data set of three observations as below.

t 1 2 3
At tx1, x2, x3, x4u tx1x2, x3u tx2, x3, x4u
at x1 x2 x3

Note that we have a1, a2 P A1 X A2 and a2, a3 P A2 X A3. Hence the matrix C has two

rows, where the first row corresponds to observations p1, 2q, and the second row corresponds

to observations p2, 3q. As for observations p1, 2q, A1zA2 � tx4u and A2zA1 � H, so we must

have a1 � x1 ¡
� x4, and thus the c14 entry of c1 is 1. As for observations p2, 3q, A2zA3 � tx1u

and A3zA2 � tx4u, so we must have a2 � x2 ¡
� x1 or a3 � x3 ¡

� x4. Hence the entries c21

and c34 of c2 is 1.

c11 c21 c31 c41 c12 c22 c32 c42 c13 c23 c33 c43 c14 c24 c34 c44 b
c1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
c2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
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In this example with 4 alternatives, we only need to list up 25 constraints regarding acyclicity

of ¡�.20 This number will explode as the number of alternatives get larger.

In testing RSM/TRSM, we search for a selection profile under which there exists an ap-

propriate selection �1 of binary relation �. Recall that once a selection profile
�
xpqq

�Q
q�1

is

determined, binary relation � is defined: x2 � x1 if xt P Bt for some t P T , x2 P Atzx1, and

x1 £R x2. We need to check if there exists an acyclic (or asymmetric and transitive) selection

�1 such that for every x1 P Bt, there exists x2 P At with x2 �1 x1. That is �1 has to be chosen

so that every alternative in Bt is dominated by some other alternative in At.

By nature of the problem, similar to the case of De Clippel and Rozen, it can be rephrased

as the solvability of a 0-1 integer problem C �x ¥ b, and the restriction of acyclicity (asymmetry

and transitivity) is required through some additional linear constraints. The solution vector

x � px11, x21, . . . , xn1, . . . , x1n, . . . , xnnq is interpreted as a vector version of a selection �1 from

�: xij � 1 if xi�1 xj , and xij � 0 otherwise, and matrix C is an pnT �n2q matrix that tells us

candidates of where to define �1. More specifically, the matrix C consists of pn�n2q-matrices

tCtuTt�1, and the vector b consists of n-dimensional vectors tbtuTt�1. For i P t1, . . . , nu, i-th

row of Ct and i-th coordinate of bt correspond to information regarding alternative xi at

t-th observation. Denote them by cti � pc11, . . . , cn1, . . . , c1i, . . . , cni, . . . , c1n, . . . , cnnq and bti.

Though every entry cjk of cti depends on t P T and i P t1, 2, ..., nu, we omit them for the

sake of notational simplicity. By using these notions, the problem C � x ¥ b is equivalent to

cti � x ¥ bti, or
°n
j�1 cjixji ¥ bti for every t P T and i P t1, 2, ..., nu.

For every t P T and i P t1, 2, ..., nu, the entries of cti and bti are set to 0 except for the

following cases.

(I) Suppose that xj � xk. Since �1 is defined as a selection from �, we cannot have xj�1 xk,

or equivalently xjk � 0 must hold in such a case. To require this, for such a pair of

indices pj, kq, we let cjk � �n.

(II) Suppose that xi P Bt
i , where Bt

i is specified by a given selection profile
�
xpqq

�Q
q�1

. Then,

xji � 1 must hold for at least one j such that xj � xi. To require this, we set cji � 1 for

all such j and bti � 1.

Recall that for RSM model, this binary relation �1 has to be acyclic, and for TRSM model

20There are 4 constraints that require asymmetry, 6 constraints regarding cycles involving two alternatives, 9
constraints regarding three-alternative cycles, and 6 regarding four-alternative cycles.
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c11 c21 c31 c41 c12 c22 c32 c42 c13 c23 c33 c43 c14 c24 c34 c44 b
c1

1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c1

2 -4 -4 -4 -4 -4 -4 -4 1 0 -4 -4 -4 -4 -4 -4 -4 1
c1

3 -4 -4 -4 -4 -4 -4 -4 0 1 -4 -4 -4 -4 -4 -4 -4 1
c1

4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c2

1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c2

2 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c2

3 -4 -4 -4 -4 -4 -4 -4 0 1 -4 -4 -4 -4 -4 -4 -4 1
c2

4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c3

1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c3

2 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c3

3 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0
c3

4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

Table 4: Matrix C and vector b defined for Example 4

it has to be asymmetric and transitive. These requirements will be made as constraints on

the solution vector x. RSM model requires that binary relation �1 is acyclic, which requires

x to satisfy (31). TRSM model requires that binary relation �1 is asymmetric and transitive.

These two constraints are assured as follows: for every i, j, k P t1, . . . , nu,

1� xij � xji ¥ 0, (32)

xij � xjk ¤ 2xik � 1. (33)

Constraint (32) assures asymmetry of �1 and (33) assures transitivity of �1.

It is not difficult to check that, by constracting C and b as above, a data set is rationalizable

by an RSM model if and only if there exists a selection profile
�
xpqq

�Q
q�1

such that the problem

C �x ¥ b has a solution x subject to constraint (31). A data set is rationalizable by an TRSM

model if and only if there exists a selection profile
�
xpqq

�Q
q�1

such that the problem C � x ¥ b

has a solution x subject to constraints (32) and (33).

Example 4 (continued). Note that there are three cycles with respect to ¡R: x1 ¡
R x2 ¡

R x1;

x2 ¡
R x3 ¡

R x2; and x1 ¡
R x3 ¡

R x2 ¡
R x1. Let selection profile be px1, x2, x1q, which

implies B1 � tx2, x3u, B2 � tx3u, B3 � H, and binary relation � is such that: x4 � x2 and

x1 � x3. Then the C matrix and b vector is defined as in Table 4.

This problem C�x ¥ b has a solution x � p0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0q, where x42, x13 �

1, and 0 elsewhere. This means that by setting x4�1 x2 and x1�1 x3, which is obviously asym-
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metric and transitive, this data set is consistent with an TRSM model.

Appendix III: Full-observation tests

Here we introduce full observation version characterizations of the limited consideration mod-

els, and describe how we adapt them to the limited data context in our simulation. The full

observation characterizations are based on observation of a choice function f : 2X Ñ X, where

fpAq P A for every A � X.

AFP, CFP, and AFP+CFP models are characterized by acyclicity of a binary relation

inferred from the choice function and the model: for AFP model, x2 ¡AFP x1 if there exist

A,A1 � X such that x2 � fpA1q, fpA1q � fpAq, and A � A1zx1; for CFP model, x2 ¡CFP x1

if there exist A1, A2 � X such that fpA2q � x2, fpA1q � x1, and tx1, x2u � A2 � A1; for

AFP+CFP model, x2 ¡AFP�CFP x1 if there exist A,A1, A2 � X such that fpA2q � x2, fpA1q �

x1, fpA1q � fpAq, A � A1zx1 and tx1, x2u � A2 � A1. See Masatlioglu, Nakajima, and Ozbay

(2012) for AFP, and Lleras, Masatlioglu, Nakajima, and Ozbay (2017) and its working paper

version (2015) for CFP and AFP+CFP.

As shown in Manzini and Mariotti (2007), the choice function f is consistent with RSM

model if and only if it satisfies,

• Weak WARP: for every A,A1, A2 � X, tx1, x2u � A � A1 � A2 and x2 � fptx1, x2uq �

fpA2q implies x1 � fpA1q, and

• Expansion: for every A,A1, A2 � X, x � fpA1q � fpA2q and A � A1 Y A2 implies

x � fpAq.

Au and Kawai (2011) show that the choice function is consistent with TRSM model if and

only if it satisfies Weak WARP, Expansion, and acyclicity of the following binary relation:

x2 ¡TRSM x1 if there exists A1, A2 � X such that tx1, x2u � A2 � A1, x2 � fpA2q, and

fpA1q � fpA1zx1q.

The above conditions are adapted to limited data environments as follows. Given a data

set tpat, AtqutPT , for model M P tAFP, CFP, AFP+CFPu, the binary relation ¡M is defined

in our context by rephrasing “there exists A � X” by “there exits t P T ,” and then we test

acyclicity of this limited-data-based ¡M. For example, the binary relation in the AFP model

is defined using a limited data set as follows: x2 ¡AFP x1 if there exists s, t P T such that

x2 � at, at � as, and As � Atzx2. Similary, the conditions for testing RSM model can be
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molded into our context by rephrasing “for every A � X” by “for every t P T .” For example,

Weak WARP is expressed as: for every r, s, t P T , tx1, x2u � Ar � As � At and x2 � ar � at

implies x1 � as. The limited-data-based binary relation ¡TRSM of TRSM model is defined in

a parallel fashion with AFP, CFP, and AFP+CFP models. Then we test TRSM by observing

whether the data set obeys Weak WARP, Expansion, and acyclicity of this ¡TRSM .

Remark: For AFP, CFP, and AFP+CFP models, it is known that there are weak versions

of WARP that characterize these limited consideration models. In particular, Masatligolu,

Nakajima, and Ozbay (2012) show that there is an axiom WARP(LA) that is equivalent

to acyclicity of ¡AFP ; Lleras, Masatlioglu, Nakajima, and Ozbay (2017) show that axiom

WARP-CO is equivalent to the acyclicity of ¡CFP ; Lleras, Masatlioglu, Nakajima, and Ozbay

(2015) show that axiom LC-WARP* is equivalent to the acyclicity of ¡AFP�CFP . Since these

equivalences break under a limited data set, we dealt only with the acyclicity conditions in

testing these models.
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