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Abstract

This paper develops revealed preference tests for choice models under limited consideration,

allowing a partially observed data set. Leading theories in the literature such as the limited

attention model, the rationalization model, the categorize-then-choose model, and the rational

shortlisting models are covered. Given a tool for testing limited consideration models, we

analyze the empirical aspects of them. Our revealed preference tests are applied to randomly

generated data sets to compare the strength of observable restrictions across various models.

In addition, we carried out an experiment to compare models in terms of Selten’s index, which

is a measure for plausibility of a model in explaining a given data set. As a result, remarkable

differences are seen both in observable restrictions and Selten’s indices across models.
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1 Introduction

Let X be a finite set of alternatives, and A Ă X be a set of feasible alternatives for an

agent. Following the classical choice theory, an agent will choose the most preferred alternative

according to her preference which is often assumed to be a strict preference. In testing if an

agent’s behavior can be accounted for by this standard framework, the theory of revealed

preference is one of the most prevailing methods for economists. Typically, we collect finitely

many observations of an agent’s behavior O “ tpat, AtqutPT , where T is the set of indices of

observations, At Ă X is the set of feasible alternatives at observation t, and at is the chosen

alternative from At. It is well known that a data set is consistent with the standard choice

framework, if and only if it obeys the strong axiom of revealed preference (SARP), which

requires acyclicity of the direct revealed preference ąR defined as x2 ąR x1, if x2 “ at for

some t P T , x2 ‰ x1, and x1 P At.

However, as pointed out in a number of experimental studies, violation of SARP is not rare

at all, and various theories of bounded rationality have been proposed for systematic analyses

of cyclical choices. Amongst others, in the recent decision theory literature, a class of decision

procedures so called limited consideration models has been widely studied. There, some fea-

sible alternatives are a priori excluded from an agent’s consideration due to the limitation of

recognition capacity and/or due to the shortlisting according to some criteria different from her

preference (e.g., psychological restrictions, a preference on categories rather than alternatives,

and others). As a result, for each feasible set A, an agent maximizes her preference relation not

necessarily on A itself, but on some subset ΓpAq Ă A, which we call a consideration set. The

primal objective of this paper is to develop the counterparts of SARP for this type of decision

models. That is, given a data set O “ tpat, AtqutPT , we provide a necessary and sufficient

condition under which O is consistent with some specific type of limited consideration model

in the following sense: we can find a strict preference ą and Γp¨q such that for every t P T ,

at ą x whenever x P ΓpAtqzat.

It is clear that, without any restriction on a set mapping Γ, testing a limited consideration

model is vacuous in that any choice behavior is accounted for by letting tatu “ ΓpAtq for

every t P T . Thus, we deal with models where some restrictions are imposed on an agent’s

consideration mapping Γ : 2X Ñ 2X , which specifies her consideration set for every A Ă X.

Possible restrictions include the following two types which are well-established in the literature:

(i) the attention filter property (AFP), which requires that for every A Ă X and x P A,
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x R ΓpAq ùñ ΓpAzxq “ ΓpAq and (ii) the competition filter property (CFP), which requires

that for every A1 Ă A2, x R ΓpA1q ùñ x R ΓpA2q. In words, AFP requires that the removal

of unrecognized alternatives does not change the set of recognized alternatives, while CFP

requires that an alternative ignored at a smaller feasible set cannot be recognized at a larger

feasible set. If we adopt both AFP and CFP as plausible restrictions, then it seems natural

to consider the joint of them, or (iii) Γ obeying both AFP and CFP, to which we refer as

AFP+CFP. In addition, as an important special case of Γ obeying CFP, we take into account

(iv) the rational shortlist method (RSM) in Manzini and Mariotti (2007). There, an agent

makes a shortlist consisting of maximal elements with respect to an asymmetric first step

preference, and then she makes a choice to maximize her preference relation. For every A Ă X,

a shortlist as above can be captured as the consideration set ΓpAq. A stronger version of RSM

is also considered, namely (v) the transitive rational shortlist method (TRSM), where a first

step preference is asymmetric and transitive. In this model, Γ obeys AFP+CFP and even

more. We show a necessary and sufficient condition under which a data set O “ tpat, AtqutPT

is consistent with each of the above five models.

In the literature of decision theory, revealed preference characterizations for these mod-

els have been provided in terms of a choice function, which is equivalent to a data set with

tAtutPT “ 2X . For example, Masatlioglu, Nakajima, and Ozbay (2012) and Lleras, Masatli-

oglu, Nakajima, and Ozbay (2015, 2017) characterize AFP, CFP, and AFP+CFP models in

terms of restrictions on a choice function.1 Choice functions derived from RSM and TRSM

models are respectively characterized by Manzini and Mariotti (2007) and Au and Kawai

(2011). On the other hand, these characterizations are mainly for clarifying the normative

aspects of models rather than testing them from actual data sets. Indeed, they are not straight-

forwardly extendable to the case of a general data set O “ tpat, AtqutPT . De Clippel and Rozen

(2014) is the first paper to shed light on revealed preference tests for limited consideration mod-

els, where a test for AFP models based on a general data set is provided. This paper can be

regarded as a follow-up of their paper in that we add revealed preference tests for other im-

portant models, as well as simulation and experimental data analyses. Meanwhile, it should

be noted that, as explained in Sections 2 and 3, our approach for testing models is distinct

from that of De Clippel and Rozen, and even for AFP models, our necessary and sufficient
1Lleras, Masatlioglu, Nakajima, and Ozbay (2015) is a working paper version of Lleras, Masatlioglu, Nakajima,

and Ozbay (2017).
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condition takes a form quite different from their condition.

Given tools for testing limited consideration models, we apply them to look at the empir-

ical aspects of the models. One possible direction is comparison of the relative restrictiveness

between models. It is obvious that limited consideration models are relatively permissive com-

pared to the rational choice model, and it is known that there are several subclass/superclass

relations within limited consideration models. Meanwhile, it is not at all clear how relatively

restrictive/permissive the models are. This can be assessed through a simulation. Following

Bronars (1987), we generate random choices and apply our tests to see the fraction of data that

are consistent with each model. Provided that observable restriction of each model depends

on the structure of feasible sets, we generate random profiles of feasible sets as well as choices

upon them. In our simulation, we stick to the environment with 20 feasible sets each of which

contains 2 – 8 alternatives out of 10 alternatives. The result is rather striking: the strength

of observable restriction is quite different across models. AFP model is very hard to reject

with average pass rate of random data exceeding 99%, and CFP model is also permissive with

average pass rate exceeding 60%. However, the joint of them, or AFP+CFP model, is far

more restrictive with average pass rate being less than 4%. Thus, the joint of rather weak

behavioral restrictions could result in strong observable restrictions. The rational shortlisting

type models both have strong testing power: the average pass rate of RSM is less than 3%

and that of TRSM is less than 0.1%.

Furthermore, we carried out an experiment to compare models in terms of Selten’s index,

which is a measure for evaluating a model as an explanation of data. Given choice data of

subjects, Selten’s index of a model is practically calculated as the difference between pass rate

of the revealed preference test of actual data and that of randomly generated choices. Loosely

speaking, a model is highly evaluated if (i) it can well explain observed choices, while (ii) its

observable restriction is strong (see Selten (1991) and Beatty and Crawford (2011)). In our

baseline experiment, we adopted one profile of feasible sets generated in the simulation part,

i.e., each subject was asked to make choices on 20 feasible sets containing 2 – 8 alternatives

out of 10 alternatives. Amongst 113 subjects, 33% of them passed SARP, about 60% were

consistent with RSM/TRSM, and the pass rates for AFP, CFP and AFP+CFP exceeded 90%

(nobody failed AFP test). On the other hand, in terms of Selten’s index, AFP+CFP model

distinctively performed well. As a comparative experiment, we also collected choice data with

smaller feasible sets, where each subject was given 20 feasible sets containing 2 – 5 alternatives
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out of 10 alternatives. In this case, TRSM achieved the highest value of Selten’s index.

From a technical perspective, our revealed preference tests involve combinatorial calcula-

tions, which also applies to De Clippel and Rozen (2014)’s test for AFP model.2 Nevertheless,

features of the tests allow us to employ a computing method called backtracking, which is an

efficient search method in dealing with combinatorial problems.3 We adopted this method

in our testing algorithms, and actually applied them in the simulation and experiment. In

that sense, one may regard our simulation and experiment also as the implementation of our

algorithm, with which even 10,000 sets of random data can be calculated in acceptable time

by using unexceptional computers.

Organization of the paper: In Section 2.1, we introduce limited consideration models that

are dealt with in this paper, and in Section 2.2, we briefly review the revealed preference test

by De Clippel and Rozen (2014). The theoretical heart of our paper lies in Section 3: we

provide a basic idea of our approach in testing limited consideration models, by filling in the

details through derivation of our test for AFP model. The revealed preference tests for CFP,

AFP+CFP, and rational shortlisting type models are given in Section 4. In Section 5, we

deal with issues related to computation and algorithms, including the backtracking method.

Finally, respectively in Sections 6.1 and 6.2, we apply our tests to simulation and experimental

data.

2 Limited consideration models

2.1 Models

Consider a single-agent decision problem where X is a finite set of alternatives, and ą is a

complete, asymmetric, and transitive preference of an agent, to which we refer as a strict

preference.4 If an agent obeys the rational choice model, then for every feasible set A Ă X,

she maximizes her strict preference on A. On the other hand, motivated by evidences contra-

dicting the rational choice theory, a number of alternative decision procedures are proposed

in the literature of bounded rationality. Amongst others, in this paper, we focus on limited
2De Clippel and Rozen (2014) show that their test for AFP model is NP hard.
3Classical textbook examples where backtracking is used are the eight queens puzzle, crossword puzzles, and

sudoku.
4For every x P X, x č x, and for every distinct x, y P X, either x ą y or y ą x holds, and for every distinct

x, y, z P X, x ą y and y ą z imply x ą z.
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consideration models, where either consciously or unconsciously, an agent makes a shortlist of

alternatives before she chooses an alternative. That is, there exists a consideration mapping

Γ : 2X Ñ 2X such that ΓpAq Ă A for every A Ă X, and an agent maximizes her strict

preference on ΓpAq, rather than A itself. In what follows, given a consideration mapping Γ,

ΓpAq is referred to as a consideration set on A. Furthermore, in general, we refer to a pair of

a consideration mapping and a strict preference pą,Γq as a limited consideration model.

In Masatlioglu, Nakajima, and Ozbay (2012), they consider a situation in which an agent

cannot recognize all feasible alternatives due to limitation of recognition capacity. There,

following psychological literature, a consideration mapping Γ is supposed to have the attention

filter property (AFP) defined as: for every A Ă X and x P A,

x R ΓpAq ùñ ΓpAzxq “ ΓpAq. (1)

In words, the consideration set is not affected when unrecognized elements are removed from

a feasible set. Alternatively, (1) is rewritten as: for every A Ă X and A1 Ă A,

ΓpAq Ă AzA1 ùñ ΓpAzA1q “ ΓpAq. (2)

In what follows, when Γ obeys AFP, we refer to pą,Γq as a limited consideration model with

AFP, or simply, an AFP model.

As an alternative structure of a consideration mapping, Lleras, Masatlioglu, Nakajima,

and Ozbay (2017) consider the following restriction: for every A1 Ă A2 and x P A1,

x R ΓpA1q ùñ x R ΓpA2q. (3)

In words, if an alternative is not recognized in a smaller feasible set, then it cannot be rec-

ognized in a larger feasible set. This seems plausible if an agent has limited capacity of

recognition. Equivalently, (3) can be written as: for every A1 Ă A2,

ΓpA2q X A1 Ă ΓpA1q. (4)

This condition is equivalent to the monotonicity of the set of unrecognized alternatives. We

say that Γ obeys the competition filter property (CFP) if it obeys (3), or equivalently (4). A

limited consideration model pą,Γq is referred to as a CFP model when Γ obeys CFP. It is
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known that this type of restriction on Γ characterizes some conscious shortlisting behavior

such as the order rationalization model by Cherepanov, Feddersen, and Sandroni (2013) and

the categorize-then-choose model by Manzini and Mariotti (2012). This property is also used

in the limited consideration with status quo model in Dean, Kibris, and Masatlioglu (2017).

If we admit that both AFP and CFP are reasonable, then it is natural to consider the joint

of AFP and CFP. Indeed, as pointed out in Lleras, Masatlioglu, Nakajima, and Ozbay (2015),

both AFP and CFP are plausible in a number of real-world examples. For instance, consider

the situations in which an agent pays attention to: (a) n-most advertised commodities; (b)

all commodities of a specific brand, and if there are none available, then all commodities

of another specific brand; or (c) n-top candidates in each field in job markets. All of these

decision procedures derive consideration mappings satisfying both AFP and CFP. A pair pą,Γq

is referred to as a limited consideration model with AFP+CFP, or an AFP+CFP model in

short, if Γ obeys AFP+CFP.

Limited consideration models with CFP and those with AFP+CFP can be related to

Manzini and Mariotti (2007)’s two-step decision procedure called a rational shortlist method.

There, an agent has a preference relation for each step, say ą1 and ą, and for every A Ă X,

an agent firstly makes a shortlist ΓpAq such that

ΓpAq “ tx P A : Ex1 P A such that x1 ą1 xu, (5)

and then, in the second step, she maximizes her second step preference relation ą on ΓpAq.

In Manzini and Mariotti (2007), the first step preference ą1 is just assumed to be acyclic,

while Au and Kawai (2011) deal with the case where ą1 is asymmetric and transitive.5 We

say that Γ obeys the (transitive) rational shortlist method, or in short, RSM (TRSM), if it can

be described as (5) by using an acyclic (asymmetric and transitive) binary relation ą1. By

abuse of terminology, we refer to pą,Γq as an RSM (TRSM) model, if Γ obeys RSM (TRSM).

If pą,Γq is an RSM model and x R ΓpAq for some x P A, then there exists some x1 P A such

that x1 ą1 x. Then, for every A1 Ą A, x R ΓpA1q, and hence, an RSM model is a special case of

a CFP model. When ą1 is asymmetric and transitive, which is a TRSM case, Γ defined in (5)

also obeys AFP, i.e., it obeys AFP+CFP. Moreover, one can confirm that pą,Γq is a TRSM
5In Manzini and Mariotti (2007), they assumed that both ą1 and ą are just asymmetric. However, since they

also assume that the choice function is nonempty for all A Ă X, it is clear that ą1 must be acyclic (otherwise ΓpAq

would be empty for some A).
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model if and only if it is an RSM model obeying AFP. We state it as a proposition, since it is

new in the literature.

Proposition 1. A limited consideration model pą,Γq is a TRSM model, if and only if it is

an RSM model obeying AFP.

Note that, while every RSM (TRSM) model obeys CFP (AFP+CFP), there exists a con-

sideration mapping with CFP (AFP+CFP) that cannot be represented as (5) for any acyclic

(asymmetric and transitive) binary relation on X. For example, amongst the examples (a) –

(c) referred to in introducing an AFP+CFP model, only (b) is consistent with a TRSM model.

It is also clear that if pą,Γq is a TRSM model, then it is a special case of all other models

referred to in this section.

2.2 De Clippel and Rozen’s test for AFP model

In the decision theory literature, all decision models stated in the preceding subsection are

introduced with revealed preference based characterizations (see Appendix III for details).

These characterizations are based on the properties of a choice function, which is a function

f : 2X Ñ X with fpAq P A for every A Ă X and fpAq is interpreted as an agent’s choice when

a feasible set is A. In other words, an econometrician is supposed to observe an agent’s choices

over all logically possible feasible sets. This is reasonable in that these characterizations are

mainly for clarifying normative aspects of models rather than testing them.

On the other hand, from the viewpoint of testing models, it is more useful to have revealed

preference characterizations based on a data set in which an agent’s choices on some feasible

sets are observable. Formally, we consider a data set in the form of O “ tpat, AtqutPT , where

T “ t1, 2, ..., T u is the set of indices of observations, At Ă X is the feasible set at observation

t, and at P At is the chosen alternative at t P T . Throughout this paper, we assume that

As ‰ At for s ‰ t.6 In general, deriving a revealed preference characterization based on a

general data set is nontrivial even if that based on a choice function is known.7 Concerning

limited consideration models, a revealed preference test based on O “ tpat, AtqutPT is firstly

analyzed by De Clippel and Rozen (2014) mainly for AFP model. To see how their result

builds upon the known choice-function-based characterization, we give a brief review of their
6Obviously, a choice function is a data set with tAtutPT “ 2X .
7Even for the rational choice model, for example, a data set requires to check SARP, while it suffices to check

WARP (asymmetry of the direct revealed preference relation) if a choice function is observable.
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AFP test, while shedding light on a common issue concerning revealed preference tests for

limited consideration models based on a general data set.

When an econometrician has access to a choice function f , AFP model is characterized in

Masatlioglu et al. (2012) as follows. Define a binary relation ąAFP such that for x1, x2 P X,

x2 ąAFP x1, if x2 “ fpAq and x2 ‰ fpAzx1q for some A Ă X. (6)

As long as AFP is imposed on Γ, this ąAFP reveals “true” preference rankings between al-

ternatives. To see this, suppose that x2 ąAFP x1 holds, or x2 “ fpAq ‰ fpAzx1q. Then,

ΓpAq ‰ ΓpAzx1q must hold, and AFP implies that x1 P ΓpAq. Hence, x2 ą x1 must hold.

Thus, naturally, for a choice function f to be consistent with some AFP model, ąAFP must

be acyclic, and more substantially, the other direction is also the case, i.e., the acyclicity of

ąAFP is necessary and sufficient for f to be consistent with an AFP model. That is, under

the acyclicity of ąAFP, there exists AFP model pą,Γq such that for every A Ă X, fpAq ą x

for every x P ΓpAqzfpAq.

De Clippel and Rozen (2014) point out that, while ąAFP can be similarly defined even

under a general data set O “ tpat, AtqutPT and its acyclicity is still necessary, it is no longer

sufficient for O to be consistent with some AFP model. We review their example below, where

ąAFP is acyclic, but the data set cannot be consistent with any AFP model. That is, there is

no AFP model pą,Γq such that for every t P T , at ą x for x P ΓpAtqzat.8

Example 1. Let X “ tx1, x2, x3, x4, x5u, and consider a data set of six observations as below,

where for each t P T , the chosen alternative is underlined (e.g., a1 “ x4, a2 “ x5,and so on):

A1 “ tx1, x4u, A2 “ tx4, x5u, A3 “ tx1, x2, x3u,

A4 “ tx1, x3, x4u, A5 “ tx2, x3, x4u, A6 “ tx2, x4, x5u.

Here we can define ąAFP such that x1 ąAFP x3 and x4 ąAFP x2, which is obviously acyclic.

For example, we have x1 ąAFP x3, because a4 “ x1 ‰ a1 and A1 “ A4zx3. Given x1 ąAFP x3

and x4 ąAFP x2, it must hold that x1 ą x3 and x4 ą x2 for the data set to be consistent with

an AFP model. This in turn implies that x1 R ΓpA3q and x4 R ΓpA5q. Then, AFP requires that
8Note that Example 1 has another important implication. For the data set in the example, in fact, we can find a

pair pą,Γq so that (i) at ą x for every t P T and x P ΓpAtqzat, and (ii) Γ obeys AFP on observed feasible sets. The
data set is not consistent with any AFP model, since it is impossible to find any Γ that obeys AFP on the entire
domain with satisfying at ą x for every t P T and x P ΓpAtqzat. This is known as the extendability problem.
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ΓpA3q “ ΓpA3zx1q “ Γptx2, x3uq “ ΓpA5zx4q “ ΓpA5q, which is impossible, because a3 ‰ a5.

Notice that in the above example, it holds that a3, a5 P A3XA5, a3 ‰ a5, and A3zA5 “ tx1u

and A5zA3 “ tx4u are completely excluded respectively from ΓpA3q and ΓpA5q. In fact, this is

a source of the inconsistency with AFP model. More generally, if a data set is collected from

an agent obeying AFP model pą,Γq, it must hold that as, at P As X At and as ‰ at ùñ Dx P

AszAt : x P ΓpAsq or Dx P AtzAs : x P ΓpAtq. The RHS in turn implies that either as ą x

for some x P AszAt or at ą x for some x P AtzAs. The main contribution of De Clippel and

Rozen (2014) is showing that this property essentially characterizes data sets derived from

AFP models.

Theorem 0. [De Clippel and Rozen] A data set O “ tpat, AtqutPT is consistent with AFP

model, if and only if there exists an acyclic binary relation ą˚ such that

as, at P As X At and as ‰ at ùñ Dx P AszAt : as ą˚ x or Dx P AtzAs : at ą˚ x. (7)

By using Figure 1, we can see how Theorem 0 strengthens the condition of the acyclicity

of ąAFP. Consider the pair of observations pas, Asq and pat, Atq in Figure 1(a), where ąAFP

is not explicitly generated. However, as a matter of fact, either as ąAFP y1 (the red arrow) or

at ąAFP x1 (the blue arrow) is “hidden” behind these observations. Letting Ā :“ As X At “

tas, atu, even if a choice there is unobservable, either as or at must be chosen from Ā. Guessing

that as is chosen from Ā, it means that the choice reversal occurs when x1 is removed from

At. Thus, we have a situation of (6) so that at ąAFP x1 or the blue arrow is implied (Figure

1(c)). Similarly, guessing that at is chosen from Ā, as ąAFP y1 or the red arrow is implied

(Figure 1(b)). Notice that each case corresponds to the RHS of the condition (7). Given this,

we can loosely interpret Theorem 0 as follows: it requires that for each pair of observations

like Figure 1(a), we can make a guess of a hidden ąAFP relation so that the collection of them

is acyclic even combined with explicitly defined ąAFP relations. In Example 1, pa3, A3q and

pa5, A5q are exactly as Figure 1(a), but any possible conjecture on ąAFP (either x3 ąAFP x1

or x2 ąAFP x4) would cause a cycle due to the existence of explicitly generated ąAFP relations

of x1 ąAFP x3 and x4 ąAFP x2.

As seen from the above argument, in dealing a general data set, we need to make a guess

of hidden preference relations and check if there exists such a guess that is consistent with the

theoretical hypothesis in issue (AFP, in the above case). Although our approach for revealed
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Figure 1: Making a guess of a hidden ąAFP relation.

preference tests is distinct from that of De Clippel and Rozen (2014) even for the case of AFP

model, it does share this principle.

3 Building up our idea via AFP test

In this section, we put forward a general idea for our revealed preference tests, while clarifying

the details through the case of AFP model. Similar to De Clippel and Rozen (2014), we

consider a data set in the form of O “ tpat, AtqutPT . Recall that T “ t1, 2, ..., T u is the set

of indices of observations, At Ă X is the feasible set at observation t, at P At is the chosen

alternative at t P T , and As ‰ At is assumed for every s ‰ t. Note that, concerning notation

for a binary relation, we use both px, yq P R and xRy to represent that x and y are ordered

by some R.

Definition 1. A data set O “ tpat, AtqutPT is rationalizable by a limited consideration model

pą,Γq if for every t P T , at ą x whenever x P ΓpAtqzat. If O is rationalizable by pą,Γq where

Γ : 2X Ñ 2X obeys the property M P tAFP, CFP, AFP+CFP, RSM, TRSMu on 2X , then we

say that O is rationalizable by a limited consideration model M.9

Given a data set O “ tpat, AtqutPT , define the direct revealed preference relation ąR such

that x2 ąR x1, if x2 “ at for some t P T , x2 ‰ x1, and x1 P At. It is well known that

a data set is consistent with the rational choice model, if and only if ąR is acyclic, or the

strong axiom of revealed preference (SARP) is satisfied. Put otherwise, if a data set O obeys

SARP, then we can find a strict preference ą such that pą,Γq rationalizes O with Γ being
9We require Γ to satisfy the corresponding property on entire domain 2X rather than the set of observed feasible

sets. Hence, our revealed preference tests take into account the extendability problem referred to in footnote 8.
Naturally, one could consider the rationalizability by imposing each property only on observed feasible sets, which
is done by Tyson (2013) for AFP model.
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the identity mapping. It is easy to check that the rational choice model is a special case of

AFP, CFP, AFP+CFP, RSM, and TRSM respectively: if Γ is the identity mapping, it obeys

all these properties. Hence, our revealed preference tests become substantial when O contains

revealed preference cycles, which is formally defined as a set of pairs C “ tpxk, xk`1quKk“1 with

xk ąR xk`1 for every k “ 1, 2, . . . ,K, and x1 “ xK`1. We refer to each pxk, xk`1q as an edge

of this cycle.

Following the definition, in testing if O “ tpat, AtqutPT is rationalizable by M-model, we

need to find both ą and Γ obeying M. Given that our revealed preference analysis puts

emphasis on testing models from actual data, reducing it to a tractable problem is one of the

central issues. Specifically, we can reduce the rationalizablity of a data set to the solvability

of a specific constraint satisfaction problem defined on the set of revealed preference cycles.

Suppose that a data set contains Q revealed preference cycles in total, and for every q “

1, 2, ..., Q, let Cq be the q-th revealed preference cycle. Picking up one edge for each q-th cycle,

we can construct a sequence pc1, c2, ..., cQq P ˆ
Q
q“1Cq. In particular, we say that a sequence

pc1, c2, ..., cQq is a traverse across cycles, if the set tcqu
Q
q“1 is acyclic as a binary relation on X.10

(Note that each cq is an ordered pair of elements in X, and hence tcqu
Q
q“1 can be regarded as

a binary relation on X.) For each M P tAFP, CFP, AFP+CFP, RSM, TRSMu, we identify

a constraint, which we call M-condition, so that the existence of a traverse obeying it is

equivalent to the rationalizability of a data set by M-model. While searching such a traverse

involves combinatorial calculations, as explained in Section 5, every M-condition has a nice

structure that enables us to apply a simple but powerful search algorithm called backtracking.

In the rest of this section, we first derive a common starting point of all our revealed

preference tests. Then, we proceed to the case of AFP model to see how a model-specific

constraint on a traverse, which actually works as a test, is identified. The essence of our

testing procedure is common across models, though other models are postponed to Section 4.
10The motivation of the term “traverse” is due to the way it “cuts through” cycles (every cycle has an edge in it)

in a “non-circular” fashion (it is acyclic).
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A common starting point of our revealed preference tests

Suppose that a data set O is generated by some limited consideration model pą,Γq. Assuming

that there are Q revealed preference cycles, define Są such that

Są “

#

px, yq P

Q
ď

q“1

Cq : y ą x

+

, (8)

which is interpreted as the set of “false” revealed preference relations in cycles (in that x ąR y

but y ą x). Since ą is a strict preference, Są is acyclic as a binary relation, and every

revealed preference cycle must contain at least one element of Są, i.e., Są XCq ‰ H for every

q “ 1, 2, ..., Q. Consider a traverse c “ pc1, c2, ..., cQq P ˆ
Q
q“1Cq of which each cq is chosen from

Są X Cq, and let Sc “ tcqu
Q
q“1. Note that such a profile c is indeed a traverse, since Sc Ă Są

and Są is acyclic. Defining S´1
c as the inverse relation of Sc, or py, xq P S´1

c ðñ px, yq P Sc,

it is actually a part of the preference relation: py, xq P S´1
c ùñ px, yq P Sc Ă Są, and it is

clear that px, yq P Są ùñ py, xq P ą. Hence, letting

Bt
c “ ty P At : yS´1

c atu (9)

for every t P T , it is a set of feasible alternatives better than the chosen alternative at.

Obviously, such a set must be excluded from ΓpAtq, or for every t P T , ΓpAtq Ă AtzBt
c must

hold.

Summarizing, if a data set is generated from a limited consideration model pą,Γq, then

there exists a traverse across revealed preference cycles c “ pc1, c2, ..., cQq such that ΓpAtq Ă

AtzBt
c for every t P T . We record this simple observation for future references, as it is a

common starting point of all our revealed preference tests.

Fact 1. Suppose that a data set O “ tpat, AtqutPT is collected from an agent obeying some

limited consideration model pą,Γq. Then, there exists a traverse c “ pc1, c2, ..., cQq P ˆ
Q
q“1Cq

such that ΓpAtq Ă AtzBt
c for every t P T , where Bt

c “ ty P At : yS´1
c atu.

When a specific restriction M is imposed on Γ, we can derive a stronger constraint on

a traverse, which we call M-condition for each M P tAFP, CFP, AFP+CFP, RSM, TRSMu.

Every M-condition is constructed based on Fact 1 and the shape restriction on Γ specific to

each model, and the testing procedure for each model is reduced to searching for a traverse

obeying M-condition.
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Note that, actually, in checking the existence of a traverse obeying M-condition, it suffices

to search within the set of essential revealed preference cycles. Formally, a revealed preference

cycle is said to be essential, if it does not contain any cycles except for itself. For example,

a cycle like x ąR y ąR x ąR z ąR x is not essential, since it contains two (essential)

cycles x ąR y ąR x and x ąR z ąR x. In what follows, we only consider essential revealed

preference cycles, i.e., when we say there are Q cycles in total, it means that there are Q

essential revealed preference cycles. The validity of this reduction is proved in Section 5.1 as

a part of computational issue.

Testing AFP model based on Fact 1

In the rest of this section, we consider the case of M “ AFP. Consider a data set O “

tpat, AtqutPT derived from an agent obeying an AFP model pą,Γq, and suppose that there

are Q revealed preference cycles. Then, by Fact 1, there exists a traverse across cycles c “

pc1, c2, ..., cQq such that for every t P T , ΓpAtq Ă AtzBt
c, and AFP casts further restrictions. If

both AtzBt
c Ă pAs X Atq and AszBs

c Ă pAs X Atq hold for some s, t P T , it implies that both

ΓpAtq Ă pAs X Atq Ă At and ΓpAsq Ă pAs X Atq Ă As hold. Then, by AFP, it must be the

case that ΓpAsq “ ΓpAs X Atq “ ΓpAtq, which in turn implies that as “ at. Thus, when a

data set is rationalizable by an AFP model, there must exist a traverse obeying the following

condition, and more substantially, the other direction is also the case.

AFP-condition: Given a data set O “ tpat, AtqutPT containing Q revealed preference cycles,

a traverse c “ pc1, c2, ..., cQq P ˆ
Q
q“1Cq obeys AFP-condition, if for every s, t P T ,

“

pAszBs
c q Y pAtzBt

cq
‰

Ă pAs X Atq ùñ as “ at. (10)

Theorem 1. A data set O “ tpat, AtqutPT is rationalizable by an AFP model, if and only if

there exists a traverse obeying AFP-condition.

By Theorem 1, testing AFP model is reduced to checking the existence of a traverse obeying

AFP-condition, which is obviously a constraint satisfaction problem. Recall that, if a traverse

c “ pc1, c2, ..., cQq is constructed from a preference relation ą such that cq P SąXCq for every q,

the corresponding S´1
c is a part of ą. Thus, when a true preference ą is unknown, a traverse c,

or the corresponding S´1
c can be interpreted as a partial guess of a hidden preference relation.

In this sense, our test is searching for a guess of preference obeying a restriction derived from
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the model in issue, which is reminiscent of Theorem 0. Then, by (9), Bt
c is interpreted as a

guess of the set of alternatives better than a choice. As we refer to in Fact 1, such a set must

be excluded from ΓpAtq, and since AFP is a shape restriction on Γ, it naturally casts some

restriction on “better-than sets” tBt
cutPT , which is nothing but AFP-condition. The above

aspect is also shared by other M-conditions and tests based on them in Section 4.

The formal proof of Theorem 1 is postponed to Appendix I, but we here provide a basic

idea for proving the substantial direction, or “if” part. Our proof consists the following three

steps:

(i) Fix a traverse c obeying AFP-condition and define Γ : 2X Ñ 2X such that

ΓpAq “ AzBt
c, if AtzBt

c Ă A Ă At (11)

“ A, otherwise,

which is actually well-defined: based on a traverse obeying AFP-condition, if AtzBt
c Ă

A Ă At and AszBs
c Ă A Ă As hold for some s ‰ t, then we have AzBt

c “ AzBs
c . In

addition, Γ actually obeys AFP.

(ii) Based on Γ constructed in the previous step, we define a binary relation ą˚ such that

x2 ą˚ x1, if for some t P T , x2 “ at, x1 P ΓpAtq and x2 ‰ x1, and show that it is acyclic.

(iii) Letting ą be a linear extension of ą˚, we confirm that pą,Γq rationalizes the data set.

In fact, all our revealed preference tests can be proved through the above three-step procedure,

though the construction of Γ differs across models in issue.

Remark: We here look at AFP-condition from a slightly different viewpoint. Suppose that a

data set O “ tpat, AtqutPT is collected from an AFP model pą,Γq, and define for each t, the

set of alternatives better than at as Bt
ą “ ty P At : y ą atu. Then, one can confirm that (10)

is satisfied even if Bt
c is replaced with Bt

ą. In fact, this modified version of AFP-condition

characterizes the set of preferences that can rationalize O combined with some Γ obeying

AFP.11 Put otherwise, given a data set O and the hypothesis of Γ obeying AFP, the set of

possible preferences of an agent is equal to the set of preferences obeying AFP-condition. In

fact, this property is also shared by other M-conditions.

To see how Theorem 1 works as a test, we provide the following two numerical examples.
11The necessity is almost obvious. Given a preference ą of which tBt

ąu obeys (10), then ą can rationalize the
data, combined with Γ defined as (11) replacing Bt

c with Bt
ą.
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The first example is the same with the one in Section 2.2, which is not rationalized by any

AFP model, and we confirm how our test rejects this data set. On the other hand, in the

second example, there is a traverse obeying AFP model and the data set is rationalized by an

AFP model.

Example 1 (continued). Consider the data set in Example 1. In this data set, there are seven

essential revealed preference cycles.12 We show that it is impossible to find a traverse c obeying

AFP-condition, by focusing on cycles x1 ąR x3 ąR x1 and x2 ąR x4 ąR x2. Recall that by the

definition of a traverse, every cycle must have at least one edge in c. Consider any traverse c

for which edge px1, x3q is selected at x1 ąR x3 ąR x1. This yields px1, x3q P Sc, which in turn

implies x3 P B4
c , since x3 P A4 and px3, x1q P S´1

c with x1 “ a4. Then, regardless of B1
c , we

have
“

pA1zB1
c q Y pA4zB4

c q
‰

Ă tx1, x4u “ pA1XA4q, but x4 “ a1 ‰ a4 “ x1, a violation of AFP-

condition. Similarly, any traverse c in which edge px4, x2q is selected from x2 ąR x4 ąR x2

leads to a violation of (10) at observations 2 and 6. Finally, we consider any traverse c with

px3, x1q and px2, x4q being selected respectively from x1 ąR x3 ąR x1 and x2 ąR x4 ąR x2.

This implies that x1 P B3
c and x4 P B5

c , and hence,
“

pA3zB3
c q Y pA5zB5

c q
‰

Ă tx2, x3u “ A3XA5.

However, x3 “ a3 ‰ a5 “ x2, which is a violation of (10). As a result, we cannot find any

traverse obeying (10), or equivalently, the data set in question is not rationalizable by AFP

model.

Example 2. Let X “ tx1, x2, x3, x4, x5, x6, x7u, and consider a data set of five observations

as follows, where for each t P T , the chosen alternative is underlined:

A1 “ tx1, x2, x3u, A2 “ tx1, x2, x4, x6u, A3 “ tx1, x3, x5, x7u,

A4 “tx2, x4, x6u, A5 “ tx3, x5, x7u.

There are four essential revealed preference cycles: C1 : x1 ąR x2 ąR x1, C2 : x1 ąR

x3 ąR x1, C3 : x2 ąR x4 ąR x2, and C4 : x3 ąR x5 ąR x3; and hence there must

exist at least one “false” ąR-ordered pair in each of them. One possible traverse is c “

ppx1, x2q, px1, x3q, px2, x4q, px3, x5qq. Fixing such c, we have the corresponding binary relation

Sc “ tpx1, x2q, px1, x3q, px2, x4q, px3, x5qu, and then tBt
cutPT is derived as follows. Since we

have x1 “ a1, x2, x3 P A1, and px2, x1q, px3, x1q P S´1
c , it follows from (9) that B1

c “ tx2, x3u.
12The essential cycles are: p1q x1 ąR x3 ąR x1; p2q x1 ąR x4 ąR x1; p3q x2 ąR x3 ąR x2; p4q x2 ąR x4 ąR

x2; p5q x4 ąR x5 ąR x4; p6q x1 ąR x3 ąR x2 ąR x4 ąR x1; and p7q x1 ąR x4 ąR x2 ąR x3 ąR x1.
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t 1 2 3 4 5
Bt tx2, x3u tx4u tx5u H H

AtzBt tx1u tx1, x2, x6u tx1, x3, x7u tx2, x4, x6u tx3, x5, x7u

Table 1: Sets tBt
cutPT corresponding to traverse c in Example 2.

Similarly, we have x2 “ a2, x4 P A2, and px4, x2q P S´1
c , so B2

c “ tx4u. Following an

analogous procedure, we have B3
c “ tx5u, and B4

c “ B5
c “ H. Now we show that the traverse

c “ ppx1, x2q, px1, x3q, px2, x4q, px3, x5qq actually succeeds in satisfying AFP-condition. Indeed,

as we can see from Table 1, there is no pair s, t P T such that
“

pAszBs
c q Y pAtzBt

cq
‰

Ă pAsXAtq,

and AFP-condition is satisfied for this traverse. Thus, this data set is rationalizable by an

AFP model.

We conclude this section with the reference to the connection with Theorem 0 by De Clippel

and Rozen (2014). Since Theorems 0 and 1 characterize the same model, the existence of a

traverse obeying AFP-condition must be equivalent to the existence of a binary relation ą˚

obeying (7) in Theorem 0. We provide a direct proof for this equivalence as follows.

If there exists a traverse c “ pc1, c2, ..., cQq obeying AFP-condition, let ą˚ be the one

defined in step (ii) of the proof, i.e., x2 ą˚ x1 if x2 “ at for some t P T and x1 P ΓpAtq, with

Γ being defined by (11). The acyclicity of this binary relation will be proved in Appendix I,

and here we show that it obeys (7). Suppose not: for some s, t P T , it holds that as, at P

pAs X Atq with as ‰ at, at č˚ x for all x P AtzAs, and as č˚ x for all x P AszAt. Since Γ

is defined by (11), this implies that pAtzAsq Ă Bt
c and pAszAtq Ă Bs

c . This in turn implies

that
“

pAszBs
c q Y pAtzBt

cq
‰

Ă pAs X Atq, but since we have as ‰ at, this means the violation of

AFP-condition.

To see the other direction, let ą˚ be an acylic binary relation obeying (7), and let ą be a

linear extension of ą˚. Define Są as in (8), and consider a traverse c “ pc1, c2, ...., cQq of which

cq is taken from Są X Cq for every q “ 1, 2, ..., Q. We claim that this traverse obeys AFP-

condition. Suppose to the contrary that, for some s, t P T , we have
“

pAszBs
c q Y

`

AtzBt
c

˘‰

Ă

pAs X Atq and as ‰ at. Since S´1
c Ă ą, letting Bt

ą “ ty P At : y ą atu, it holds that Bt
c Ă Bt

ą

for every t P T , which in turn implies that
“

pAszBs
ąq Y

`

AtzBt
ą

˘‰

Ă
“

pAszBs
c q Y

`

AtzBt
c

˘‰

Ă

pAs X Atq. Then, there is no x P AszAt with as ą x, since pAszBs
ąq Ă At holds. Similarly, we

cannot find any x P AtzAs with at ą x. As ą˚Ăą holds, this in turn implies that ą˚ cannot

satisfy (7), which is a contradiction.
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4 Testing CFP, AFP+CFP, and rational shortlisting

In this section, we provide revealed preference tests for CFP, AFP+CFP (Section 4.1), RSM,

and TRSM models (Section 4.2). One could confirm that all these tests are built upon a

general idea explained in the preceding section, and the structure of tests are parallel to that

of the test for AFP model. As stated in Section 3, any of limited consideration models in this

paper cannot be refuted, if a data set does not contain revealed preference cycles. In Section

4.3, we strengthen this conclusion: all our revealed preference tests do not “bite” unless there

exists some s, t P T such that as ąR at ąR as, or the weak axiom of revealed preference

(WARP) is violated. Put otherwise, not only cyclical choices, but an explicit choice reversal

between some pair of alternatives must be observed for limited consideration models in this

paper to be refutable.

4.1 CFP-condition and AFP+CFP-condition

Suppose that O “ tpat, AtqutPT is collected from an agent obeying a CFP model pą,Γq, and

let Q be the number of revealed preference cycles in the data. By Fact 1, there exists a traverse

c “ pc1, c2, . . . , cQq P ˆ
Q
q“1Cq such that ΓpAtq Ă AtzBt

c for every t P T . Bearing this in mind,

consider any s, t P T such that As Ă At. Then, considering CFP defined in (4), it must hold

that ΓpAtqXAs Ă ΓpAsq. In addition, since ΓpAsq Ă AszBs
c , this implies that ΓpAtqXBs

c “ H,

which in turn implies that at R Bs
c . In fact, this simple observation completely characterizes

whether a data set is consistent with a CFP model.

CFP-condition: Given a data set O “ tpat, AtqutPT containing Q revealed preference cycles,

a traverse c “ pc1, c2, . . . , cQq P ˆ
Q
q“1Cq obeys CFP-condition, if for every s, t P T ,

As Ă At ùñ at R Bs
c . (12)

Theorem 2. A data set O “ tpat, AtqutPT is rationalizable by a limited consideration model

with CFP, if and only if there exists a traverse obeying CFP-condition.

Remark: As stated in Section 2, it is known in the literature that CFP model is equivalent to

the categorize-then-choose model by Manzini and Mariotti (2012) and the order rationalization

model by Cherepanov, Feddersen, and Sandroni (2013). Thus when we want to test whether

a data set is consistent with these models, it suffices to apply Theorem 2.
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Then, we proceed to the case of AFP+CFP models. Clearly, if a data set O “ tpat, AtqutPT

is rationalizable by an AFP+CFP model, then it is also consistent with both AFP model and

CFP model. Hence, by Theorems 1 and 2, such a data set must have a traverse obeying both

AFP-condition and CFP-condition. However, as we shall show in the example at the end of

this subsection, the joint of AFP-condition and CFP-condition is insufficient to characterize

the observable restrictions of AFP+CFP model.

To clarify a necessary condition, let O “ tpat, AtqutPT be a data set collected from an agent

obeying an AFP+CFP model pą,Γq, which is again assumed to have Q revealed preference

cycles. Similar to the previous cases, by Fact 1, there exists a traverse c “ pc1, c2, . . . , cQq such

that the corresponding sets tBt
cutPT obey ΓpAtq Ă AtzBt

c for every t P T . By using both AFP

and CFP, it can be extended such that for every s, t P T ,

pAszBs
c q Ă At ùñ ΓpAtq Ă AtzBs

c . (13)

This can be shown as follows. Note that when pAszBs
c q Ă At holds, we have ΓpAsq Ă AszBs

c Ă

pAs X Atq Ă As. Then, by AFP, ΓpAsq “ ΓpAs X Atq must hold, which in turn implies

that x P Bs
c ùñ x R ΓpAs X Atq. In addition, since pAs X Atq Ă At, CFP implies that

x P Bs
c ùñ x R ΓpAtq, which is nothing but (13). For at P ΓpAtq to hold, we must have

pAszBs
c q Ă At ùñ at R Bs

c . (14)

Now we turn to extending (13) and (14), and show the following: for every r, s, t P T ,

rpAr Y AsqzpBr
c Y Bs

c qs Ă At ùñ ΓpAtq Ă AtzpBr
c Y Bs

c q. (15)

Recall that under the traverse c at hand, both ΓpArq Ă ArzBr
c and ΓpAsq Ă AszBs

c hold. Since

Γ obeys CFP, it holds that

x P Br
c ùñ x R ΓpAr Y Asq and x P Bs

c ùñ x R ΓpAr Y Asq,

which implies ΓpAr Y Asq Ă rpAr Y AsqzpBr
c Y Bs

c qs. Since rpAr Y AsqzpBr
c Y Bs

c qs Ă At is

assumed, we have

rpAr Y AsqzpBr
c Y Bs

c qs Ă rAt X pAr Y Asqs Ă pAr Y Asq,
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and AFP implies that ΓpAt X pAr Y Asqq “ ΓpAr Y Asq Ă rpAr Y AsqzpBr Y Bsqs. Finally,

combining rAt X pAr Y Asqs Ă At and CFP, we have x P pBr
c Y Bs

c q ùñ x R ΓpAtq as desired.

Gathered together with the fact that at P ΓpAtq, the condition (15) in turn implies that for

every r, s, t P T ,

rpAr Y AsqzpBr
c Y Bs

c qs Ă At ùñ at R pBr
c Y Bs

c q. (16)

By an inductive argument, we can extend (15) and (16) for any subset of indices τ Ă T such

that
`
Ť

rPτ A
r
H
Ť

rPτ B
r
c

˘

Ă At. Namely, by the extension of (16), a data set collected from an

agent obeying AFP+CFP must have a traverse across revealed preference cycles obeying the

following condition.

AFP+CFP-condition: Given a data set O “ tpat, AtqutPT containing Q revealed preference

cycles, a traverse c “ pc1, c2, . . . , cQq P ˆ
Q
q“1Cq obeys AFP+CFP-condition, if for every t P T

and any set of indices τ Ă T ,

˜

ď

rPτ

Ar
I

ď

rPτ

Br
c

¸

Ă At ùñ at R
ď

rPτ

Br
c . (17)

While it looks less obvious than the cases of AFP and CFP, the existence of a traverse

obeying the above does characterize the rationalizability by AFP+CFP model.

Theorem 3. A data set O “ tpat, AtqutPT is rationalizable by an AFP+CFP model, if and

only if there exists a traverse obeying AFP+CFP-condition.

Finally, we point out that the joint of AFP-condition and CFP-condition does not work as

a test for rationalizability by an AFP+CFP model. In the example below, a data set contains a

traverse obeying both AFP-condition and CFP-condition, and hence it is rationalizable respec-

tively by an AFP model and a CFP model. However, it does not contain any traverse obeying

AFP+CFP-condition, or equivalently, it is not rationalizable by any AFP+CFP model.

Example 2 (continued). Consider the data set given in Example 2. It is already shown that

traverse c “ ppx1, x2q, px1, x3q, px2, x4q, px3, x5qq succeeds in satisfying AFP-condition. Here,

we start from showing that it also succeeds with CFP-condition. Recall that the binary relation

corresponding to this traverse is Sc “ tpx1, x2q, px1, x3q, px2, x4q, px3, x5qu, and the relevant

sets tBt
cutPT are summarized in Table 1. Looking at the data set and Table 1, one can confirm

that CFP-condition is satisfied: A4 Ă A2 and A5 Ă A3, but a2 “ x2 R B4 and a3 “ x3 R B5.
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Thus, c “ ppx1, x2q, px1, x3q, px2, x4q, px3, x5qq succeeds both in AFP-condition and CFP-

condition. However, this traverse violates AFP+CFP-condition. Indeed, since tx1u “ A1zB1
c Ă

A2 and x2 “ a2 P B1
c , (14) is violated, let alone AFP+CFP-condition. In addition, as

shown below, this is the only traverse that obeys both AFP-condition and CFP-condition (thus,

there is no traverse that can satisfy AFP+CFP-condition). For a traverse to satisfy CFP-

condition, the traverse (or the corresponding Sc) can contain neither px4, x2q nor px5, x3q. To

see this, suppose that px4, x2q P Sc. Then we have x2 P B4
c , A4 Ă A2, and a2 “ x2 P B4

c ,

which violates CFP-condition. Having px5, x3q P Sc leads to a similar violation of CFP-

condition. Therefore, from the third and fourth cycles, it must be the case that c3 “ px2, x4q

and c4 “ px3, x5q. Furthermore, for a traverse c to satisfy AFP-condition, px2, x1q R Sc

and px3, x1q R Sc must hold whenever px2, x4q, px3, x5q P Sc. To see this, consider traverse

c1 “ ppx2, x1q, px1, x3q, px2, x4q, px3, x5qq. Then we have B2
c “ tx1, x4u, and thus

tx2, x6u “ A2zB2
c Ă A4 Ă A2 “ tx1, x2, x4, x6u,

but x2 “ a2 ‰ a4 “ x4, which is a violation of AFP-condition. The cases of traverse c2 “

ppx1, x2q, px3, x1q, px2, x4q, px3, x5qq and c3 “ ppx2, x1q, px3, x1q, px2, x4q, px3, x5qq respectively

lead to similar violations of AFP-condition.

4.2 RSM/TRSM-condition

If a data set O “ tpat, AtqutPT is collected from an agent obeying a (transitive) rational

shortlist method pą,Γq, then it is consistent with a CFP model (AFP+CFP model), as stated

in Section 2.1. However, it is not difficult to find a data set that is consistent with CFP-

condition (AFP+CFP-condition), but inconsistent with any RSM (TRSM) model. Indeed,

for a data set to be rationalizable by an RSM model, it must hold that for every r, s, t P T

with Ar “ As Y At,

as “ at ùñ ar “ as “ at, (18)

which is not guaranteed by the existence of a traverse obeying CFP-condition/AFP+CFP-

condition.13 In this subsection, we provide a test for RSM (TRSM) models.
13If an agent obeys a rational shortlist method, ΓpArq Ă ΓpAsqYΓpAtq is obvious. In addition, x “ at “ as implies

that no element in As Y At “ Ar can dominate x with respect to the first step preference, and x dominates with
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Suppose that an agent has two preferences ą1 and ą, where the former is merely acyclic

while the latter is a strict preference, and that a consideration mapping Γ is defined as (5).

Similar to the previous models, suppose that a data set is collected from such an agent, and

that it contains Q revealed preference cycles. Then, Fact 1 implies that there exists a traverse

c “ pc1, c2, . . . , cQq such that the corresponding tBt
cutPT satisfies ΓpAtq Ă AtzBt

c for every

t P T . Since an agent obeys an RSM (TRSM) model, for every x1 P Bt
c, there exists some

x2 P Atzx1 such that x2 ą1 x1. This in turn implies that x1 is not considered as long as x2 is

feasible, and hence, x1 ąR x2 is impossible.

Given the discussion above, we can define a binary relation Ź on X such that x2 Ź x1 if

x1 P Bt
c for some t P T , x2 P Atzx1, and x1 čR x2. Since we start from a data set collected from

an RSM (TRSM) model, for every x1 P Bt
c, there exists at least one x2 P Atzx1 with x2 Źx1 for

which x2 ą1 x1 actually holds. Loosely speaking, Ź can be seen as a broad guess of the first

step preference ą1. In addition, the acyclicity of ą1 requires that we can always find a selection

Ź1 Ă Ź that is acyclic, and for every t P T and x1 P Bt
c, there exists some x2 P Atzx1 with

x2 Ź1 x1. Furthermore, if the first step preference ą1 is assumed to be transitive, a selection

Ź1 has to be chosen so that

for every x1 P Bt
c and z1, ..., zk, x2 Ź1 z1 Ź1 ¨ ¨ ¨ Ź1 zk Ź1 x1 ùñ x1 čR x2. (19)

Now, Ź1 is a “correct” guess of the first step preference, and if transitivity is imposed, the

above implies that x2 ą1 x1. Hence, if x1 ąR x2 were to hold, then it leads a contradiction that

x1 is deleted from a consideration set from which it is actually chosen. In fact, this observation

is summarized in the conditions below, and plays a key role to characterize a data set that is

rationalizable by an RSM (TRSM) model.

RSM-condition: Given a data set O “ tpat, AtqutPT containing Q revealed preference cycles,

a traverse c “ pc1, c2, . . . , cQq P ˆ
Q
q“1 obeys RSM-condition, if for the corresponding tBt

cutPT ,

there exists an acyclic selection Ź1 of Ź, where for every t P T ,

for every x1 P Bt
c, there exists x2 P At with x2 Ź1 x1. (20)

TRSM-condition: Given a data set O “ tpat, AtqutPT containing Q revealed preference

respect to the second step preference all other elements in ΓpArq Ă ΓpAsq Y ΓpAtq.
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cycles, a traverse c “ pc1, c2, . . . , cQq P ˆ
Q
q“1 obeys TRSM-condition, if for the corresponding

tBt
cutPT , there exists an acyclic selection Ź1 of Ź that obeys (19) and (20).

Theorem 4. A data set O “ tpat, AtqutPT is rationalizable by an RSM model, if and only if

there exists a traverse obeying RSM-condition.

Theorem 5. A data set O “ tpat, AtqutPT is rationalizable by a TRSM model, if and only if

there exists a traverse obeying TRSM-condition.

Remark: In testing TRSM-condition, the search for an acyclic selection Ź1 of Ź that obeys

(19) and (20) can be done by way of a simple 0-1 integer programming (see Appendix II for the

formulation). In the simulation and experiment in Section 6, we actually use it, which works

very well. In principle, the RSM model Ź1 can also be searched using a similar 0-1 integer

programming. However, requiring acyclicity of Ź1 in the programming can be computationally

heavy, so applying 0-1 integer programming for RSM may not be practical.14

It is shown by Manzini and Mariotti (2007) that an RSM model can be characterized by a

combination of two axioms on a data set, namely, Weak WARP and Expansion (see Appendix

III). The former is implied when the consideration mapping obeys CFP. The latter requires

that for every A1, A2 Ă X, if x “ fpA1q “ fpA2q, then x “ fpA1 Y A2q, where f is a choice

function. Given this, one may be tempted to consider that an RSM model is tested by the

joint of CFP condition and (18), a straightforward partial-observation version of Expansion.

The following example shows that this is not the case, i.e., we present a data set that obeys

CFP condition and (18), but violates RSM condition. A similar example can be found for the

joint of AFP+CFP condition and (18).

Example 3. Let X “ tx1, x2, x3, x4, x5, x6u and consider a data set of six observations as

below, where for every t P T , the chosen alternative is underlined.

A1 “ tx1, x2, x4u, A2 “ tx1, x2u, A3 “ tx3, x4, x6u, A4 “ tx3, x4u,

A5 “ tx2, x5, x6u, A6 “ tx5, x6u.

It can be seen that Expansion, or (18), is trivially satisfied, because the chosen alternatives are

all different. Note that there are four cycles with respect to ąR: C1 : x1 ąR x2 ąR x1, C2 :

14For RSM, we applied a different strategy to find a suitable selection Ź1, of which the detail is available from the
authors upon request.
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x3 ąR x4 ąR x3, C3 : x5 ąR x6 ąR x5, and C4 : x1 ąR x4 ąR x3 ąR x6 ąR x5 ąR x2 ąR x1.

We first show that RSM-condition cannot be satisfied by any traverse. Considering the first

cycle, if we set c1 “ px2, x1q, we will have a1 “ x1 P B2
c . However, then, there does not exist

any x P A2 such that x1 čR x, and we cannot define Ź for x1. Therefore, we need to set

c1 “ px1, x2q as the edge from the first cycle. By the same logic, we must set c2 “ px3, x4q and

c3 “ px5, x6q regarding the second and third cycles respectively. Then we have x4 Źx2, x6 Źx4,

and x2 Ź x6, and it will be impossible to find an acyclic selection of Ź. On the other hand,

CFP-condition is satisfied by the traverse c “ ppx1, x2q, px3, x4q, px5, x6q, px3, x6qq. Note that

the only set inclusions of feasible sets that we have are At Ă At´1 for t “ 2, 4, 6. Meanwhile,

Bt
c “ H for t “ 2, 4, 6, so CFP-condition is trivially satisfied.

4.3 TRSM is weaker than WARP

When a choice function f is fully observed, as well known, it is rationalized by the rational

choice model, if (and only if) ąR is asymmetric, or the weak axiom of revealed preference

(WARP) is satisfied. Hence, when a choice function is observable, any limited consideration

model M P tAFP, CFP, AFP+CFP, RSM, TRSMu is not refutable under WARP. However,

for a general data set O “ tpat, AtqutPT , WARP is no longer sufficient for O to be consistent

with the rational choice model, and it is less obvious whether WARP is still sufficient for a

data set to be consistent with all five models raised above. In the rest of this section, we show

that, even for general data sets, WARP ensures the rationalizability by a TRSM model, and

hence, any of the five models is not refutable.

Fix a data set O “ tpat, AtqutPT . In order to rationalize it by a TRSM model, we need to

find an asymmetric and transitive first step preference ą1. In fact, if O obeys WARP, then we

can find a traverse c, so that the transitive closure of Sc works as a first step preference. To get

the idea, suppose that a data set generates ąR-relations as depicted in Figure 2. There, each

arrow represents a revealed preference relation, i.e., xi Ñ xj means that xi ąR xj . The list

of cycles are: C1 : x1 ąR x2 ąR x6 ąR x1, C2 : x2 ąR x3 ąR x4 ąR x2, C3 : x2 ąR x6 ąR

x4 ąR x2, C4 : x
6 ąR x4 ąR x5 ąR x6, and C5 : x

1 ąR x2 ąR x3 ąR x4 ąR x5 ąR x6 ąR x1.

By letting c “ ppx1, x2q, px4, x2q, px4, x2q, px4, x5q, px4, x5qu, we have the corresponding binary

relation Sc “ tpx1, x2q, px4, x2q, px4, x5qu (red arrows in the figure). Profile c is qualified as a

traverse and the transitive closure of Sc (Sc itself in this case) works as an asymmetric and

transitive first step preference. Indeed, by letting x1 Ź x2, x4 Ź x2, and x4 Ź x5, then it is
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Figure 2: Adopting Sc as a first step preference.

acyclic and its transitive closure is Ź itself, and x Ź y implies that y čR x. Hence, this Ź

satisfies all requirements of the rationalizing first step preference for a TRSM model, and we

can adopt it as ą1.

The key trick in the above example is that traverse c is selected so that every cycle has at

least two “unselected” edges. For instance, in the cycle x1 ąR x2 ąR x6 ąR x1, px2, x6q and

px6, x1q are outside of Sc. As long as a traverse c is selected as such, we can always use the

transitive closure of corresponding Sc as an asymmetric and transitive first step preference,

which is shown in the proof of Theorem 6 below. Then, the issue is the existence of such a

traverse, which is ensured by the following lemma.

Lemma 1. Suppose that O obeys WARP. Then, we can find a traverse c so that every cycle

has at least two unselected edges, or each cycle has at least two pairs of alternatives px, yq such

that x ąR y and px, yq R Sc.

Theorem 6. If a data set O “ tpat, AtqutPT obeys WARP, then it is rationalizable by a TRSM

model.

Since TRSM model is a special case of all other limited consideration models, namely AFP,

CFP, AFP+CFP, and RSM models, this theorem yields the following corollary.

Corollary 1. If a data set O “ tpat, AtqutPT obeys WARP, then AFP, CFP, AFP+CFP,

RSM, and TRSM models are all non-refutable.
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5 Searching for a traverse

5.1 Essential cycles

As briefly mentioned in Section 3, given a model M P tAFP, CFP, AFP+CFP, RSM, TRSMu,

it suffices to deal with the set of essential revealed preference cycles in searching for a traverse

obeying M-condition. Recall that a revealed preference cycle C is essential, if it does not

contain any cycles except for itself. In what follows, suppose that a data set contains Q

revealed preferences in total, and that amongst them, sQpď Qq cycles are essential. With no

loss of generality, we may assume that cycles tC1, C2, ..., C sQu are essential.

Lemma 2. For every profile c̄ “ pc̄1, c̄2, ..., c̄ sQq P ˆ
sQ
q“1Cq, there exists a profile c “ pc1, c2, ..., cQq P

ˆ
Q
q“1Cq such that Sc “ tc̄qu

sQ
q“1, i.e., for every q ě sQ ` 1, there exists q̄ ď sQ with cq “ c̄q̄.

Proof. Recall that for each q “ sQ ` 1, sQ ` 2, ..., Q, the cycle Cq is not essential, and hence,

it contains an essential cycle Cq̄ (q̄ ď sQ). Then, it holds that tc̄q̄u
sQ
q̄“1 X Cq ‰ H for each

q “ sQ` 1, sQ` 2, ..., Q. Choosing cq from this intersection for q ě sQ` 1, we can extend c̄ such

that c “ pc̄1, c̄2, ..., c̄ sQ; c sQ`1, ...., cQq, which obviously satisfies the desired property.

We say that a traverse c “ pc1, c2, ..., cQq is essential, if there exists a profile of edges of

essential cycles pc̄1, c̄2, ..., c̄ sQq P ˆ
sQ
q“1Cq that satisfies Sc “ tc̄qu

sQ
q“1. The following proposition

ensures that the set of essential traverses has sufficient information in testing M-condition.

Proposition 2. If there exists a traverse c “ pc1, c2, ..., cQq obeying M-condition, then there

also exists an essential traverse c1 “ pc1
1, c

1
2, ..., c

1
Qq obeying M-condition.

Proof. Let c “ pc1, c2, ..., cQq be a traverse obeying M-condition, and let c̄ “ pc1, c2, ..., c sQq P

ˆ
sQ
q“1Cq. By Lemma 2, we can find an essential traverse c1 “ pc1

1, c
1
2, ..., c

1
Qq P ˆ

Q
q“1Cq such

that Sc “ tc̄qu
sQ
q“1, which actually obeys M-condition. It is obvious that Sc1 Ă Sc, and hence,

Bt
c1 Ă Bt

c for every t P T . By the structure of M-condition, we can see the following: whenever

we have “larger” Bt-sets, (i) the LHS of AFP-condition is more permissive; (ii) the RHS of

CFP-condition is more permissive; (iii) the LHS of AFP+CFP-condition is more permissive;

and (iv) Ź is stronger and thus more difficult to find an acyclic (asymmetric and transitive)

selection of it in RSM (TRSM)-condition. All of them imply that c1 obeys M-condition

whenever c obeys M-condition.
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Given this, in testing the rationalizability by M-model, it suffices to check the existence

of an essential traverse obeying M-condition. Since each essential traverse is determined by

a sequence of edges of essential cycles, we only need to deal with the set of essential cycles.

In particular, for every essential traverse c, the set Sc is equal to the set of edges selected

from essential cycles, and hence each Bt
c can be also calculated from a traverse across essential

cycles. Provided that all M-conditions are written in terms of the properties of sets tBt
cutPT ,

this ensures that we can focus on the set of essential cycles with no loss of generality.

5.2 Backtracking

The revealed preference tests in Sections 3 and 4, as well as De Clippel and Rozen (2014)’s

AFP test, all involve combinatorial calculations, and applying them to actual data may be

computationally challenging. However, the tests become manageable with the help of a simple

but powerful method called backtracking.15 In this section, we illustrate how this method is

adopted to our revealed preference tests, after a brief introduction of this method.

To get the basic idea of backtracking, consider a problem where we have to choose cq from

some set Cq for every q “ 1, 2, ..., Q, so that the resulting sequence pc1, c2, . . . , cQq obeys some

constraint PQ. While there are
śQ

q“1 |Cq| logically possible trials that we must check, the

backtracking procedure may lead us to a solution with much fewer trials, especially when PQ

has the cut-off property defined below. For every sQ ă Q, let us refer to pc1, c2, . . . , c sQq as a

partial sequence in the sense that cq is not yet determined for q P t sQ ` 1, . . . , Qu. Then, we

say that PQ has the cut-off property if: (I) for every sQ ă Q, there exists a constraint P
sQ,

which is a length- sQ-modified version of PQ; and (II) partial sequence pc1
1, c

1
2, . . . , c

1
sQ
q violating

P
sQ implies violation of P

sQ`1 for any partial sequence pc1
1, c

1
2, . . . , c

1
sQ
, c

sQ`1q. Given the cut-

off property, if some partial sequence pc1
1, c

1
2, . . . , c

1
sQ
q violates P

sQ, then there is no need to

waste time on searching for subsequent components c
sQ`1, . . . , cQ, since there is no chance of

any sequence pc1
1, c

1
2, . . . , c

1
sQ
, c

sQ`1, . . . , cQq satisfying PQ. In fact, this feature is at the heart of

backtracking, and allows us to adopt a component-by-component search for a desired sequence.

Given below is a basic algorithm of the backtracking method. We consider a case where Cq

is finite for every q, so with no loss of generality, we assume that sets Cq are a sets of integers.

15Some foundational references of the backtracking method are Walker (1960), Davis, Logemann, and Loveland
(1962), and Golomb and Baumert (1965).
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Basic backtracking algorithm. Given sets pCqq
Q
q“1 and constraints pPqq

Q
q“1, this algorithm

yields a sequence pc1, c2, . . . , cQq that satisfies PQ, or H (meaning that PQ cannot be satisfied).

1. [Initialize.] Set sQ Ð 0.

2. [Enter level sQ`1.] (Now pc1, . . . , c sQq obeys P
sQ.) Set sQ Ð sQ`1. Then set c

sQ Ð minC
sQ.

3. [Test pc1, . . . , c sQq.] If pc1, . . . , c sQq obeys P
sQ, go to 6.

4. [Try again.] If c
sQ ‰ maxC

sQ, set c sQ to the next larger element of C
sQ, and go to 3.

5. [Backtrack.] Set c
sQ Ð minC

sQ and sQ Ð sQ´1. If sQ “ 0, return H and stop. Otherwise,

go to 4.

6. [Terminate.] If sQ “ Q, return pc1, . . . , c sQq and stop. Otherwise, go to 2.

The big picture of this algorithm is as follows. The process initially starts from considering

a singleton sequence pc1q and sees whether P1 is satisfied. If there is no such element in C1,

then we can immediately conclude that there is no chance of finding a sequence pc1, c2, . . . , cQq

obeying PQ. If we find a successful partial sequence pc1, c2, . . . , c sQ´1q and reach the sQ-th level,

we set c
sQ to be the minimum element in C

sQ, and test whether pc1, c2, . . . , c sQq obeys P
sQ. If

P
sQ is satisfied, then we proceed to the p sQ ` 1q-th level. If not, we redefine c

sQ to be the next

larger element of C
sQ and check P

sQ. If we cannot find any c
sQ P C

sQ such that pc1, c2, . . . , c sQq

obeys P
sQ, then we go back to the p sQ ´ 1q-th level and update c

sQ´1. This search algorithm

terminates when we succeed in finding some pc1, c2, . . . , cQq obeying PQ, or it is determined

that any (partial) sequence with c1 “ maxC1 cannot be successful.

We now show that the backtracking method is applicable to our revealed preference tests as

follows. Suppose that a data set O “ tpat, AtqutPT has Q essential revealed preference cycles.

For each q “ 1, 2, ..., Q, let Cq be the set of pairs px, yq P ąR in the q-th revealed preference

cycle. With a slight abuse of terminology, let us say that a sequence pc1, c2, . . . , cQq P ˆ
Q
q“1Cq

is acyclic, if its corresponding binary relation denoted by SQ “ tcqu
Q
q“1 is acyclic. Then, note

that such sequence pc1, c2, ..., cQq is a traverse if it is acyclic. Hence, if we set PQ as the joint

of acyclicity and M-condition, the revealed preference test for M-model is equivalent to the

existence problem of a sequence pc1, c2, ..., cQq obeying constraint PQ. We claim that the above

defined PQ obeys the cut-off property for every M P tAFP, CFP, AFP+CFP, RSM, TRSMu.

Condition (I): We defineP
sQ for every sQ ď Q as follows. Given a partial sequence pc1, c2, . . . , c sQq,
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we can define the corresponding binary relation S
sQ “ tcqu

sQ
q“1. Since acyclicity of pc1, c2, . . . , c sQq

is defined via acyclicity of binary relation S
sQ, acyclicity is a well-defined constraint. Now we

define a partial sequence version of M-condition, to which we refer as M
sQ-condition as follows.

Similar to (9), we can define for every t P T ,

Bt
sQ “ ty P At : yS´1

sQ
atu. (21)

We say that a partial sequence pc1, c2, ..., c sQq obeysM
sQ-condition, if the corresponding tBt

sQ
utPT

satisfies the restriction in M-condition; specifically, pc1, c2, ..., c sQq obeys AFP
sQ-condition, if it

holds that for every s, t P T ,

”´

AszBs
sQ

¯

Y

´

AtzBt
sQ

¯ı

Ă pAs X Atq ùñ as “ at. (22)

Similar terminology is used for other models as well. With this M
sQ-condition, we let P

sQ be

the joint of acyclicity and M
sQ-condition, which is clearly a well-defined constraint.

Condition (II): We show that if a partial sequence pc1, c2, ..., cQ̄q does not satisfy P
sQ for some

sQ ă Q, then pc1, c2, ..., c sQ, c sQ`1q cannot satisfy P
sQ`1 for any c

sQ`1 P C
sQ`1. It is obvious, if

pc1, c2, ..., c sQq is cyclic, then pc1, c2, ..., c sQ, c sQ`1q cannot be acyclic. Therefore, the substantial

part is M
sQ-condition. However, this follows straightforwardly by taking a look at our revealed

preference conditions and the construction of Bt-sets. Note first that whenever S
sQ`1 Ą S

sQ,

it follows from (21) that Bt
sQ`1

Ą Bt
sQ
for every t P T . Then following the same discussion

as in the proof of Proposition 2, we conclude that pc1, c2, ..., c sQ, c sQ`1q fails P
sQ`1 whenever

pc1, c2, ..., c sQq fails P
sQ.

Example 3 (continued). Consider the data set in Example 3. Let us walk through the

backtracking algorithm, and see how we determine that the data set is not rationalizable by

and RSM model. Recall that the data set has four cycles (we order the cycles and the edges in

them as below):

1. C1 “ tpx1, x2q, px2, x1qu,

2. C2 “ tpx3, x4q, px4, x3qu,

3. C3 “ tpx5, x6q, px6, x5qu,

4. C4 “ tpx1, x4q, px4, x3q, px3, x6q, px6, x5q, px5, x2q, px2, x1q, u.

29



sQ (partial) seq. P
sQ

1 ppx1, x2qq PASS
2 ppx1, x2q, px3, x4qq PASS
3 ppx1, x2q, px3, x4q, px5, x6qq FAIL
3 ppx1, x2q, px3, x4q, px6, x5qq FAIL
2 ppx1, x2q, px4, x3qq FAIL
1 ppx2, x1qq FAIL
0 H STOP

Table 2: Backtracking procedure applied to Example 3 for testing RSM.

For every sQ P t1, 2, 3, 4u, let us denote by P
sQ the joint of acyclicity and RSM

sQ-condition.

Following our backtracking procedure, we first set sQ “ 1 and set c1 “ px1, x2q, which is the

first edge of the first cycle. Since single element sequence ppx1, x2qq obeys P1, we proceed to the

second cycle by setting sQ “ 2. Here we set c2 “ px3, x4q and check whether ppx1, x2q, px3, x4qq

obeys P2, which is affirmative. Then we go to the third cycle by setting sQ “ 3 and set

c3 “ px5, x6q. In fact, this sequence ppx1, x2q, px3, x4q, px5, x6qq fails to satisfy P3, specifically

RSM3-condition. In this case, we keep sQ “ 3, and update c3 to the next element in C3, and set

c3 “ px6, x5q. Then, we test whether this updated sequence ppx1, x2q, px3, x4q, px6, x5qq obeys

P3, which is negative. At this point, we can determine that it is impossible to find a sequence

pc1, c2, c3, c4q obeying RSM-condition and acyclicity as long as px1, x2q, px3, x4q are chosen

from C1, C2 respectively. Thus we backtrack sQ to 2, and update c2 to px4, x3q. Looking at

ppx1, x2q, px4, x3qq, it fails P2. Since there is no chance of success unless px1, x2q is discarded

from the sequence, we rewind sQ to 1, and update c1 to px2, x1q. Then we check whether

ppx2, x1qq obeys P1, which is negative. Then sQ is set to 0 and the algorithm terminates, which

means that the data set is not rationalizable by RSM model.

Remark 1: One advantage of the backtracking approach is that we may be able to determine,

at an early stage of the process of search, that a data set fails the test. Due to this feature,

calculation time does depend on how we order the cycles. We suggest that the cycles are

sorted so that shorter cycles come first: whenever q1 ă q2, q1-th cycle is weakly shorter than

q2-th cycle. The cycles in Example 3 are sorted in this way. Whenever this takes too much

calculation time, it seems natural to list “problematic” cycles first. Problematic cycles are

those such that a (partial) sequence fails when adding an element at that cycle. This may

allow us to determine that a data set fails the test at an early stage of the backtracking process

(and we actually adopt this type of strategy).
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Remark 2: Backtracking can be applied to De clippel and Rozen (2014)’s AFP test as well.

Recall that their test requires the existence of an acyclic binary relation ą˚ such that, for

every s, t P T , with as, at P As X At and as ‰ at,

Dx P AszAt : as ą˚ x or Dx P AtzAs : at ą˚ x. (23)

Suppose there are Q ą 0 pairs of observations ps, tq such that as, at P As X At and as ‰ at. It

can be seen that backtracking is applicable to De Clippel and Rozen’s test, by letting PQ be

acyclicity, and for q-th pair ps, tq, defining

Cq “
 

px2, x1q : rx2 “ as and x1 P AszAts or rx2 “ at and x1 P AtzAss
(

.

6 Simulation and Experiment

The purpose of this section is twofold: one is to compare relative strength of observable

restrictions across models based on randomly generated data sets, and the other is to compare

the measure of “plausibility” across models based on experimental data sets.

The former can be regarded as a version of Bronars’ test in the context of limited con-

sideration models, and one can measure the strength of observable restriction of each model

by using its pass rate.16 If we collect a sufficiently large number of random choices according

to a uniform distribution, then the pass rate approximates the proportion of choices that are

model-consistent to all logically possible choices. If this value is very close to 1, then the model

in question is very hard to refute, or its observable restriction is weak.

As shown by Selten (1991) and Beatty and Crawford (2011), this measure of observable

restriction plays a key role in considering the measure of plausibility of a model based on

empirical or experimental data sets, which is nothing but our second issue in this section.

Given empirical or experimental data sets, Selten’s index evaluates a model by the difference

of the pass rate calculated from actual data sets and the proportion of model-consistent choices

to all logically possible choices. Practically, as in Beatty and Crawford (2011), Selten’s index

is calculated as the difference between pass rate based on actual data and that of randomly

generated data sets. We could say that a model with a higher Selten’s index is “better” than
16Bronars (1987) deals with the revealed preference test of the classical consumer theory. There, the fail rate of

GARP on randomly generated data sets on randomly generated budgets is calculated.
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that with a lower Selten’s index, or intuitively, a “nice” model in terms of Selten’s index is a

model with higher pass rate and stronger observable restrictions.17

6.1 Simulation

We generated 10,000 random data sets with |X| “ 10, |T | “ 20,min |At| “ 2, and max |At| “

8. Firstly, we randomly generated 100 variations of feasible sets An :“ tAt
nutPT for n “

1, . . . , 100: fixing n, in generating each At
n, we set |At

n| P t2, . . . , 8u following a uniform

distribution over the set of natural numbers t2, . . . , 8u, and then choose |At
n| elements from

X following a uniform distribution over X. We also require that As
n ‰ At

n for s ‰ t. For

each profile of feasible sets An “ tAt
nutPT , a random choice data set tati,nutPT is generated for

i “ 1, . . . , 100: fixing n and i, ati,n is chosen following a uniform distribution over At
n for every

t P T . Consequently we have a random choice data set Oi,n “ tpati,n, A
t
nqutPT for i “ 1, . . . , 100,

for which we apply our revealed preference tests. Note that we randomize feasible sets, as well

as choices over them, since in general, observable restriction of a specific model depends on the

structure of the feasible sets An “ tAt
nutPT . For example, if As X At “ H for every s, t P T ,

then SARP is trivially satisfied, which implies that all five limited consideration models are

non-refutable.

For eachOi,n “ tpati,n, A
t
nqutPT , we tested AFP, CFP, AFP+CFP, RSM, and TRSM, as well

as SARP and WARP. We derived the pass rates for these tests under each profile of feasible

sets, as well as the average pass rates of them over 100 profiles of feasible sets. In addition,

we apply straightforward adaptations of existing full observation based tests to our partially

observed data sets to see if they could approximate necessary and sufficient conditions. For

example, as explained in Section 2.2, if an entire choice function is observed, AFP models is

equivalent to the acyclicity of the binary relation ąAFP, and the binary relation itself can be

defined even under partially observed data sets. Then, it may be of interest to what extent the

acyclicity of ąAFP works as an approximation of AFP-condition, partly because the former

is much easier to check. The same argument applies to other models (see Appendix III for
17Selten’s index has an axiomatization as follows. Let mpα, βq P r´1, 1s be a measure of plausibility of a model

that depends on the empirical pass rate, say, α P p0, 1q, and the proportion of model-consistent choices to all logically
possible choices, say, β P p0, 1q. Then, any mp¨, ¨q obeying the following axioms is an affine transformation of
Selten’s index α´β: [Monotonicity] mp1, 0q ą mp0, 1q, [Equivalence] mp1, 1q “ mp0, 0q, and [Aggregability]
mpλα1 ` p1 ´ λqα2, λβ1 ` p1 ´ λqβ2q “ λmpα1, β1q ` p1 ´ λqmpα2, β2q. The first and second axioms determine how
a measure should deal with extreme realizations of α and β, and the third axiom essentially implies that mp¨, ¨q is a
cardinal measure.
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test our tests full obsv. tests
SARP 0 0
WARP 0 0
AFP 0.9927 0.9954
CFP 0.6298 0.6298

AFP+CFP 0.0396 0.6176
RSM 0.0259 0.5083

TRSM 0.0006 0.5050

Table 3: Average pass rates.

details of full observation based tests).

In Table 3, the average pass rates of 100 different profiles of feasible sets (10,000 agents)

are summarized. The left column gives the pass rates of revealed preference tests presented

in our paper, and the right column gives the pass rates of the corresponding straightforward

adaption of full observation version tests. The pass rate results show that AFP model is

extremely permissive, letting more than 99% of the random agents pass the test, and CFP

model is also quite permissive. On the other hand, we can say that concerning AFP+CFP,

RSM, and TRSM models, observable restrictions are reasonably strong.18 While AFP itself is

hard to reject, combining it with another model strengthens observable restrictions drastically:

AFP+CFP is much more restrictive than CFP, and the same holds for TRSM (AFP+RSM by

Proposition 1) and RSM. Note that the agents can be partitioned into eight types: agent obeys

either (i) TRSM; (ii) RSM and AFP+CFP but not TRSM; (iii) RSM but not AFP+CFP;

(iv) AFP+CFP but not RSM; (v) CFP and AFP but neither AFP+CFP nor RSM; (vi) only

CFP; (vii) only AFP; (viii) none of the models. Out of 10,000 agents, the distribution of

agents’ type is as follows: (i) 24 agents, (ii) 4 agents, (iii) 186 agents, (iv) 369 agents, (v) 5575

agents, (vi) 140 agents, (vii) 3576 agents, and (viii) 126 agents.What is striking is that while

more than 60% of all agents passed both AFP and CFP, the pass rate of AFP+CFP model

is significantly lower (lower than 0.04). Also, we can loosely say that for AFP+CFP, RSM,

and TRSM models, the gaps between our tests and the full observation tests are large. Thus,

in general, it is not plausible to use the full observation versions when dealing with partially

observed data sets.

Figure 3 visually summarizes the distributions of pass rates for each test, where the hori-
18In Table 3, the pass rates of SARP and WARP are zero. While in theory there exist choice patterns consistent

with them, there were none within our samples.
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Figure 3: Histograms.

zontal axis is the pass rate given the profile of feasible sets, running from 0 to 1 with bin width

0.05. The vertical axis is the frequency of profiles of feasible sets of which the pass rates drop

in each bin. It shows that the pass rate for CFP test has a large variance depending on the

structure of feasible sets, while pass rates for other models are more accumulated to around

either 0 and 1.

6.2 Experiment

We now proceed to the second issue of this section, or the comparison of Selten’s indices

based on experimental data sets. Amongst the profiles of feasible sets tAnu100n“1 generated for

simulation, we chose one of them: one where the pass rates of the five limited consideration

models are fairly “balanced.” In choosing one profile of feasible sets, we first listed several of

them where (i) pass rate of AFP is not 1 and (ii) pass rates of most models were distinct.

Then for each of these profiles, we generated 1000 random choices, in order to assess the pass

rates of each model in further detail. Finally, we picked one profile of feasible sets where pass

rates of all five models were distinct, pass rate of AFP is not 1, and that of TRSM is not 0.

Following the experimental design of Manzini and Mariotti (2009), we consider the situation
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

in 1 month 450 800 1150 450 450 800 850 1200 1550 500
in 3 months 800 800 800 450 1500 1150 0 0 0 0
in 5 months 1150 800 450 1500 450 450 1550 1200 850 1900

Table 4: The remuneration plans (in Japanese yen).

where each subject chooses remuneration plans of installments.19 Each remuneration plan

consists of 2400 Japanese yen overall, and this amount is split and installed in one month,

three months, and five months after the experiment was conducted. Since the profile of feasible

sets is one of those used in simulation, there are 10 alternatives and 20 feasible sets in total,

and each feasible set consists of 2 – 8 alternatives (see Appendix IV for the contents of each

feasible set). These numbers are not known to subjects. Most of the ten alternatives are in

line with the eight alternatives used in Manzini and Mariotti (2009): there are “increasing,”

“constant,” “decreasing,” and “jump” series of payments and we added two “hump” payments

in order to make the total number of alternatives ten. The alternatives are listed in Table 4:

alternatives x1 and x7 are “increasing,” x2 and x8 are “constant,” x3 and x9 are “decreasing,”

x4 and x10 are “jump,” and x5 and x6 are “hump” series.20

The pass rate for each model is in the left column of Table 5. Statistical differences between

the pass rates are significant at SARP/WARP & TRSM (at 1% significance level); AFP & CFP

(5%); AFP & AFP+CFP (1%); and AFP+CFP & RSM (1%) in terms of a two-sample t-test

assuming equal variance. The center column indicates random pass rates of models; to derive

them, we generated 500,000 random choices over the feasible sets. Then, Selten’s index of

each model is derived as the difference between pass rates of experimental data and randomly

generated data: for example Selten’s index of AFP+CFP model is 0.8832 “ 0.9115 ´ 0.0283.
19Note that Manzini and Mariotti (2009) is the working paper version of Manzini and Mariotti (2012).
20The experiment was carried out at an experimental economics laboratory at the Faculty of Political Science

and Economics, Waseda University, Japan. We ran 4 sessions and there was a total of 113 subjects. Subjects were
recruited through an on-line bulletin that is accessible by all students. The proportion of male and female subjects
were roughly the same. The experiment was computerized, and each participant was seated individually with a
separator so that they cannot look at other participants’ choices. Experimental sessions lasted an average of 42
minutes, of which the average duration of effective play was 11 minutes. The shortest session lasted 36 minutes
and the longest 51 minutes. At the beginning of the experiment, subjects read instructions on paper, while the
experimenter read the instructions aloud (see Appendix IV for an English translated version of the instructions).
Preceding the remuneration-relevant stages, subjects were asked to take part in practice stages in order to be familiar
with the usage of the computer in the experiment, and all subjects had to correctly answer questions that were asked
to check whether the subjects understood the experimental design. It was explained that at the end of the experiment,
one screen would be selected at random, and the chosen remuneration plan at that screen would be actually installed.
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Looking at Table 5, for this experimental setting, AFP+CFP model distinctively well-performs

in terms of Selten’s index, while its pass rate is not significantly different from CFP model.21

experiment pass rates random pass rates Selten’s index
SARP 0.3363 0.0000 0.3363
WARP 0.3451 0.0000 0.3451
AFP 1.0000 0.9639 0.0361
CFP 0.9558 0.4714 0.4844

AFP+CFP 0.9115 0.0283 0.8832
RSM 0.5929 0.0157 0.5772

TRSM 0.5841 0.0012 0.5829

Table 5: Experimental pass rates, random pass rates, and Selten’s indices.

Remark. Concerning the experimental pass rates, we also tested whether there are statistical

differences between pass rates of subjects when we partition them with respect to decision

time, sex, and reason of decision, using a two-sample t-test allowing different variances. There

was no statistical difference between long-decision-time subjects and short-decision-time sub-

jects; no statistical difference between male and female.22 In a questionnaire following the

experiment, we showed the subjects three experiment screens with their actual chosen alter-

natives indicated, and asked reasons of their choices. There were two clusters of subjects whose

answers were consistent across these three decisions: one is a cluster of subjects who wanted

to receive money “as soon as possible (a.s.a.p)” (29 subjects), and the other is the cluster of

subjects who would like to receive money “as equally as possible through the three installments

(smoothing)” (15 subjects). One may suspect these agents tend to be more rational, but there

were no statistical differences between these 44 subjects and the others; the “a.s.a.p.” subjects

and the others; the “smoothing” subjects and the others; or the “a.s.a.p.” subjects and the

“smoothing” subjects.

We finally refer to the result of a comparative experiment, in which the cardinality of

feasible sets vary from 2 to 5. The set of alternatives is the same as the baseline setting, and

the number of feasible sets is also the same as before. The purpose of this experiment is to

see how the size of feasible sets affects the comparison in terms of Selten’s index. Similar to
21Concerning the random pass rates of SARP and WARP, similar to the case of Table 3, in theory there exist

choices that are consistent with SARP, but there were none within the 500,000 randomly generated choices.
22A long-decision-time (short-decision-time) subject is a subject whose average decision time across 20 decisions is

longer (shorter) than the median of all subjects.
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experiment pass rates random pass rates Selten’s index
SARP 0.3875 0.0000 0.3875
WARP 0.4250 0.0000 0.4250
AFP 1.0000 0.9718 0.0282
CFP 0.9375 0.7987 0.1388

AFP+CFP 0.9125 0.3674 0.5451
RSM 0.6250 0.2038 0.4212

TRSM 0.6125 0.0623 0.5502

Table 6: Result of the comparative experiment.

the case of the baseline setting, we fix 20 feasible sets so that pass rates of five models are

distinct, and pass rate of AFP model is not 1 and that of TRSM is not 0. This experiment

was carried out at the same facility with the baseline experiment, and there was a total of 80

subjects in 3 sessions.23

The experimental pass rates, random pass rates, and Selten’s indices are summarized

in Table 6. Comparing the experimental pass rates of Tables 5 and 6, it seems that the

pass rates of relatively rational models, namely RSM, TRSM, and SARP/WARP, are slightly

higher in the comparative setting, where subjects choose from smaller feasible sets. However,

there was no statistical significance in the difference of pass rates of each model across the

two experiments. On the other hand, random pass rates are quite different across the two

experiments, and hence Selten’s indices differ as well. In this comparative experiment, we

see that TRSM model explains subjects’ behavior the best, and the explanatory power of

AFP+CFP is not as high as in the baseline experiment, due to the fact that the random

pass rate is higher in this comparative experiment. This shows that the explanatory power of

models may vary drastically in different environments, even when the observed pass rates are

similar.

Appendix I: Proofs

Proof of Proposition 1

We first show that if pą,Γq is a TRSM model, then it obeys AFP. To see this, suppose that

x P A and x R ΓpAq. If z P ΓpAq, there exists no x1 P A such that x1 ą1 z, and, in particular,
23The recruitment procedure of subjects is also same with the baseline experiment, and no subject in this compar-

ative experiment participated in the baseline experiment, and vice versa.
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there is no such x1 in Azx. Hence, it holds that ΓpAq Ă ΓpAzxq. To see the converse set

inclusion, suppose that z P ΓpAzxq, or there exists no x1 P Azx such that x1 ą1 z. If z R ΓpAq

were to hold, it must be that x ą1 z. Since x R ΓpAq, there exists some x1 P Azx such that

x1 ą1 x. However, by transitivity, this implies that x1 ą1 z, contradicting the assumption that

z P ΓpAzxq. Hence, it holds that z P ΓpAq, which, in turn, implies that ΓpAzxq Ă ΓpAq.

Conversely, suppose that pą,Γq is an RSM model obeying AFP. Let ą1 be the first step

preference corresponding to pą,Γq, and suppose that it is not transitive. Then, for some

x1, x2, x3 P X, x1 ą1 x2 ą1 x3 but x1 č1 x3. However, this implies that Γptx1, x2, x3uq “

tx1u ‰ tx1, x3u “ Γptx1, x3uq, which contradicts AFP. Thus, x1 ą1 x2 ą1 x3 ùñ x1 ą1 x3

must be satisfied.

Proof of Theorem 1

Since “only if” part has already been shown through derivation of AFP-condition, we deal with

“if” part here. Take an arbitrary traverse c that obeys AFP-condition, and define consideration

mapping Γ : 2X Ñ 2X such that for every A Ă X,

ΓpAq “ AzBt
c, if AtzBt

c Ă A Ă At for some t P T (24)

“ A otherwise.

We first show that this Γ is well-defined and obeys AFP. To see the former, suppose AszBs
c Ă

A Ă As and AtzBt
c Ă A Ă At hold for some s, t P T . This implies that

“

pAszBs
c q Y pAtzBt

cq
‰

Ă

pAs X Atq, and AFP-condition requires that as “ at. Gathering this together with A Ă

pAs X Atq, which is implied by the initial assumption, we have

A X Bs
c “ ty P A : yS´1

c asu “ ty P A : yS´1
c atu “ A X Bt

c.

Thus, we have AzBs
c “ AzBt

c, and Γ is well-defined. To see that Γ obeys AFP, take any A Ă X

and x P A with x R ΓpAq. This implies that there exists t P T such that AtzBt
c Ă A Ă At

and x P Bt
c. Note that by definition, ΓpAq “ AzBt

c. Now consider the set Azx. Since x P Bt
c,

it follows that AtzBt
c Ă Azx Ă At, and thus ΓpAzxq “ pAzxqzBt

c. Recalling that x P Bt
c, it

follows that ΓpAzxq “ pAzxqzBt
c “ AzBt

c “ ΓpAq, as desired.

Based on Γ defined as above, let us define a binary relation ą˚ as follows: x2 ą˚ x1, if
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x2 “ at for some t P T , x1 P ΓpAtq, and x2 ‰ x1. In fact, this binary relation is acyclic. To

see this, suppose by way of contradiction that there is a cycle: x1 ą˚ x2 ą˚ ¨ ¨ ¨ ą˚ xL ą˚ x1.

Note that x2 ą˚ x1 implies x2 ąR x1, which follows by the way these binary relations are

defined. Therefore, the cycle above implies x1 ąR x2 ąR ¨ ¨ ¨ ąR xL ąR x1. Then, since c is

a traverse, there exists an edge px`, x``1q contained in c. Obviously x` ąR x``1 implies that

for some t P T , x` “ at, and x``1 P At. On the other hand, gathering together px`, x``1q P Sc,

x` “ at and x``1 P At, it holds that x``1 P Bt
c, which in turn implies x``1 R ΓpAtq. Hence it

is impossible to have x` “ at ą˚ x``1, contradicting the hypothesis.

As the final step of the proof, we show that at P ΓpAtq for every t P T , which in fact

follows immediately from AFP. To see this, suppose not, i.e., there exists s P T such that

AszBs
c Ă At Ă As and at P Bs

c . However, this is impossible, since AFP requires as “ at,

which contradicts at P Bs
c . Therefore, for every t P T , at P ΓpAtq, which in turn implies that

at maximizes ą˚ within ΓpAtq. Since ą˚ is acyclic, the transitive closure of it is asymmetric

and transitive, and hence by Szpilrajn’s theorem, it can be extended to a strict preference ą

on X. Then, pą,Γq is an AFP model that rationalized the data set.

Proof of Theorem 2

Similar to the case of Theorem 1, we only show “if” part. Let c be a traverse that obeys

CFP-condition, and define tBt
cutPT corresponding to c as (9), i.e., Bt

c “ ty P At : yS´1
c atu for

every t P T . Define a consideration mapping Γ such that for every A Ă X,

ΓpAq “ A
I

ď

t:AtĂA

Bt
c. (25)

This Γ obeys CFP. To see this, consider A1, A2 Ă X such that A1 Ă A2, and x P A1 with

x R ΓpA1q. Then it suffices to show x R ΓpA2q. Note that x R ΓpA1q implies that there exist

some t P T such that At Ă A1 and x P Bt
c. Since A1 Ă A2, we clearly have At Ă A2, and it

follows that x R ΓpA2q.

Next, define ą˚ such that x2 ą˚ x1 if x2 “ at, x1 P ΓpAtq, and x2 ‰ x1. The acyclicity of

this relation can be proved similar to the case of Theorem 1. Assuming the existence of a cycle

x1 ą˚ x2 ą˚ ¨ ¨ ¨ ą˚ xL ą˚ x1, it immediately implies the existence of a revealed preference

cycle x1 ąR x2 ąR ¨ ¨ ¨ ąR xL ąR x1. Then, there exists an edge px`, x``1q that is contained

in c, or px`, x``1q P Sc. Since x` “ at for some t P T , this implies that x``1 P Bt
c. By the
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definition of Γ, it holds that x``1 R ΓpAtq, and hence x` č˚ x``1, which is a contradiction.

Finally, we show that for every t P T , at P ΓpAtq. Suppose not. Then there exists some

s P T such that As Ă At and at P Bs
c . However, this is impossible, since CFP-condition

requires that at R Bs
c . Summarizing, we have shown that ą˚ is acyclic and at maximizes

ą˚ within the set ΓpAtq for every t P T . Since ą˚ is acyclic, the transitive closure of ą˚ is

asymmetric and transitive, and hence by Szpilrajn’s theorem, it can be extended to a strict

preference ą on X. In addition, since for every t P T , at maximizes ą˚ within ΓpAtq, it

holds that at ą x for every x P ΓpAtqzat. Summarizing, we conclude that the data set is

rationalizable by limited consideration model pą,Γq, where Γ obeys CFP.

Proof of Theorem 3

Similar to the preceding theorems, we construct a pair of a consideration mapping and a strict

preference that rationalizes O based on a traverse c (and the corresponding tBt
cutPT ) obeying

AFP+CFP-condition. To define Γ, we need the following set of indices for every A Ă X:

τpAq “ max

#

τ Ă T :
ď

rPτ

Ar
I

ď

rPτ

Br
c Ă A

+

. (26)

Then, by using τpAq, define Γ such that

ΓpAq “ A
I

ď

rPτpAq

Br
c . (27)

Obviously, in order for the above definition to be well-defined, τpAq must be uniquely de-

termined for every A Ă X, which is actually the case. To see this, suppose to the con-

trary: there exist τ1pAq ‰ τ2pAq that obey (26). Then, we have
´

Ť

rPτ1pAq A
rz
Ť

rPτ1pAq B
r
c

¯

Ă

A and
´

Ť

rPτ2pAq A
rz
Ť

rPτ2pAq B
r
c

¯

Ă A, which implies that

»

–

ď

rPτ1pAqYτ2pAq

Ar
I

¨

˝

ď

rPτ1pAq

Br
c Y

ď

rPτ2pAq

Br
c

˛

‚

fi

fl Ă A.

Obviously, this can be rewritten as

¨

˝

ď

rPτ1pAqYτ2pAq

Ar
I

ď

rPτ1pAqYτ2pAq

Br
c

˛

‚ Ă A.
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By defining τpAq “ τ1pAq Y τ2pAq, we have τpAq Ľ τipAq for i “ 1, 2, which contradicts the

maximality of τ1pAq and τ2pAq.

Given that Γ defined as (27) is well-defined, we move on to show that it obeys both AFP

and CFP. Consider any A1, A2 Ă X with A1 Ă A2, and x P A1 such that x R ΓpA1q. This

means that x P
Ť

rPτpA1q B
r
c . Since τp¨q is clearly monotonic, it follows that τpA1q Ă τpA2q,

and hence, x P
Ť

rPτpA2q B
r
c . This assures that x R ΓpA2q, which shows CFP. To see AFP, take

any A Ă X and any x P A with x R ΓpAq. This means that x P
Ť

rPτpAq B
r
c , which in turn

implies that

¨

˝

ď

rPτpAq

Ar
I

ď

rPτpAq

Br
c

˛

‚ Ă Azx. (28)

The maximality and uniqueness of τp¨q, combined with (28), imply τpAq Ă τpAzxq. On the

other hand, the monotonicity of τp¨q implies τpAzxq Ă τpAq. Hence we have τpAq “ τpAzxq.

Then, we have ΓpAzxq “ pAzxqz
Ť

rPτpAzxq B
r
c “ Az

Ť

rPτpAq B
r
c “ ΓpAq, which is the desired

result.

Let ą˚ be a binary relation such that x2 ą˚ x1, if x2 “ at, x1 P ΓpAtq, and x2 ‰ x1. We

show that ą˚ is acyclic, and thus extendable to a strict preference. By way of contradiction,

suppose that there exists a cycle x1 ą˚ x2 ą˚ ¨ ¨ ¨ ą˚ xL ą˚ x1, which clearly implies x1 ąR

x2 ąR ¨ ¨ ¨ ąR xL ąR x1. Then, there exists an edge px`, x``1q contained in c, or more precisely,

Sc. Since x` “ at and x``1 P At hold for some t P T , this means that x``1 P Bt
c for such

an observation t. It is easy to check from the definition of Γ that t P τpAtq, and hence,

x``1 R ΓpAtq Ă AtzBt. However, then, it holds that x` č˚ x``1, which is a contradiction.

Finally, let us show that at P ΓpAtq for every t P T , which follows immediately from

AFP+CFP-condition. Indeed, for every t P T , we have
´

Ť

rPτpAtq A
r
H
Ť

rPτpAtq B
r
c

¯

Ă At,

and then, AFP+CFP-condition requires at R
Ť

rPτpAtq B
r
c , which in turn ensures at P ΓpAq for

every t P T . Since ą˚ is acyclic, it is extendable to a strict preference ą on X using Szpilrajn’s

theorem. Then this ą and Γ defined as (27) combined together is an AFP+CFP model that

rationalizes the data set.

Proof of Theorems 4 and 5

The proofs of Theorems 4 and 5 are almost identical, so we provide the proofs of them jointly.

Since the necessity parts of them have been already discussed, we prove the sufficient parts of
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them based on a traverse obeying RSM (TRSM)-condition. Using an acyclic selection Ź1 of

Ź, define Γ as

ΓpAq “ tx P A : Ex1 P A such that x1 Ź1 xu. (29)

Note that the selection Ź1 is acyclic, so we use it as a first step preference for the case of

Theorem 4. If we can find Ź1 so that it obeys (19) in addition to (20), then we use the

transitive closure of it, say, Ź2 as a first step preference and define Γ by using it instead of Ź1.

Note further that ΓpAtq Ă AtzBt
c holds, by the definition of Ź1 (or Ź2) and the construction

of Γ. The remaining substantial parts of the proof are to show that at P ΓpAtq for every t P T ,

and the binary relation ą˚ defined as x2 ą˚ x1 if x2 “ at, x1 P ΓpAtq, and x2 ‰ x1 is acyclic.

To prove that ą˚ is acyclic, suppose to the contrary, i.e., there is a cycle: x1 ą˚ x2 ą˚

¨ ¨ ¨ ą˚ xL ą˚ x1. Since we have ą˚ĂąR, this cycle implies x1 ąR x2 ąR ¨ ¨ ¨ ąR xL ąR x1.

Then, since c is a traverse, there exists an edge px`, x``1q contained in c, and we have x``1 P Bt
c

for every t P T with x` “ at and x``1 P At. By RSM (TRSM)-condition, there exists some

x P At such that x Ź1 pŹ2qx``1, which in turn implies x``1 R ΓpAtq. Then it is impossible to

have x` “ at ą˚ x``1, and we conclude that ą˚ is acyclic.

To see that at P ΓpAtq for every t P T , by way of contradiction, suppose that for some t P T ,

at R ΓpAtq. This means that there exists x P Atzat such that x Ź1 at, which in turn implies

x Ź at. However, this is not possible, since x Ź at requires at čR x, while we have at ąR x.

When a traverse obeys TRSM-condition and Γ is defined as the set of maximal elements with

respect to Ź2, at R ΓpAtq implies the existence of some x P Atzat such that x Ź2 at. However,

this is also impossible, since x Ź2 at implies the existence of a sequence z1, z2, ..., zk such that

x Ź1 z1 Ź1 ¨ ¨ ¨ Ź1 zk Ź1 at, and by TRSM-condition, at čR x, which contradicts the assumption

that x P At. The rest of the proof is to extend the transitive closure of ą˚ to a strict preference

by using Szpilrajn’s theorem. Then it can easily be seen that the data set is rationalized by

an RSM (TRSM) model pΓ,ąq.
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Proof of Lemma 1

Suppose that data set O “ tpat, AtqutPT contains Q revealed preference cycles in total. We

construct a traverse c “ pc1, c2, . . . , cQq via the following algorithm.24 In the procedure, let

us refer to a revealed preference cycle where an element for c has not been specified as an

untreated cycle. In addition, if x ąR y holds, then x and y are respectively referred to as the

source and the sink of the edge px, yq.

1. Fix an arbitrary untreated cycle and an arbitrary alternative x from it.
2. For every untreated cycle containing x, choose an edge whose source is x as an edge for

c.
3. Let Yx be the set of alternatives that are sinks of the edges selected in 2. For every

untreated cycle containing y P Yx, choose an edge whose sink is y as an edge for c.
4. Stop if there is no untreated cycle. Otherwise go to 1.

Since there are at most finite cycles, the algorithm stops in finitely many repetitions. Let

c “ pc1, c2, . . . , cQq be the profile of ąR-edges generated in the algorithm, and let Sc “ tcqu
Q
q“1

be the corresponding binary relation. It is obvious that every revealed preference cycle has at

least one element of Sc. Take an arbitrary revealed preference cycle xi1 ąR xi2 ąR ¨ ¨ ¨ ąR xi1

and suppose that pxik , xik`1q P Sc. We claim that, by the second and third steps of the

algorithm respectively, the edges pxik´1 , xikq and pxik`1 , xik`2q cannot be selected as elements

of Sc, which also ensures the acyclicity of Sc. We only show that pxik´1 , xikq R Sc, since the

proof for the other case is similar. Suppose that pxik , xik`1q is added to c in the r-th repetition

of the algorithm. Then, the cycle xi1 ąR xi2 ąR ¨ ¨ ¨ ąR xi1 must have been untreated until

then, which implies that pxik´1 , xikq cannot have been added to c before r-th repetition. It is

also impossible for it to be added to c at r-th repetition or later as follows. If a cycle contains

pxik´1 , xikq, then it also contains an edge in the form of pxik , yq. Hence, if such a cycle is

untreated at r-th repetition, the edge pxik , yq would be selected by the second step of the

algorithm, and there is no chance for pxik´1 , xikq to be selected at r-th repetition. This also

implies that, after r-th repetition, any untreated cycle does not contain pxik´1 , xikq, and hence

it cannot be added to c there. Summarizing, we must have pxik´1 , xikq R Sc.
24One can confirm that c in the example in Section 4.4 is specified via this algorithm with starting from x1 ą x2 ą

x6 ą x1.
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Proof of Theorem 6

If O contains no revealed preference cycle, then it is obviously rationalizable by a TRSM

model. Suppose that O obeys WARP, or every cycle associated with it consists of more than

two alternatives. By Lemma 1, we can find a traverse c such that every cycle has at least two

unselected edges. Fix such a traverse c and set Ź “ Sc, or x Ź y ðñ xScy. Then, since Sc

is an acyclic selection of ąR, it holds that x Ź y ùñ x ąR y and that Ź is acyclic. Hence,

by letting Ź1 be the transitive closure of Ź, it is asymmetric and transitive. In addition,

it holds that x Ź1 y ùñ y čR x. Indeed, since Ź “ Sc Ă ąR, if we have a sequence like

xŹ z1 Ź ¨ ¨ ¨ Ź zk Ź y ąR x, this means that there exists a revealed preference cycle where only

one edge is unselected, contradicting our hypothesis. This ensures that for every t P T , there

is no x P At such that x Ź1 at. Given this Ź1, we can construct a TRSM model by defining Γ

and ą˚ in the same way as the proof of Theorem 5.

Appendix II: Formulation of integer programming

Here we describe how we can formulate AFP test in De Clippel and Rozen (2014) and our

RSM/TRSM test as 0-1 integer programming problems. Let us denote the integer problems as

Θ ¨ x ě b, where matrix Θ and vector b are parameters determined from the data set and/or

a traverse, and vector x is the vector of interest. Throughout this appendix, x is restricted to

be a 0-1 vector.

Before presenting the integer programming formulation of De Clippel and Rozen’s AFP

test, we note again the statement of their result.

Theorem [De Clippel and Rozen] A data set O “ tpat, AtqutPT is rationalizable by an

AFP model if and only if there exists a binary relation ą˚ on X such that

(I) for every s, t P T such that as, at P As X At and as ‰ at,

Dx1 P AszAt : as ą˚ x1 or Dx2 P AtzAs : at ą˚ x2, (30)

(II) binary relation ą˚ is acyclic.

In the problem Θ ¨ x ě b, the matrix Θ and vector b are the factors for (I), and the

acyclicity of ą˚ is required through additional constraints on the solution vector x. Specifically,
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vector x “ px11, x21, . . . , xn1, . . . , x1n, . . . , xnnq is interpreted as a vector that represents binary

relation ą˚: xij “ 1 if xi ą˚ xj and xij “ 0 otherwise. As described below, matrix Θ and

vector b are determined once data set O is observed. Let I be a set of index-pairs ps, tq P T ˆT

such that as, at P As X At and as ‰ at, and let |I| “ m. Then, Θ is a matrix with m rows

(b is an m dimensional vector), where each row (entry) represents the requirements that

assure (30). Fix any row, say k-th row, and suppose that indices s, t P T are the indices

associated with this row. The k-th row of Θ is an n2 dimensional vector, which we denote

as θk “ pθ11, θ21, . . . , θn1, . . . , θ1n, . . . , θnnq, and bk (k-th entry of b) is a scalar. We omit the

index k from entries of θk for the sake of notational simplicity. Given a data set, θk is defined

so that θij “ 1 if (i) xi “ as and xj P AszAt, or (ii) xi “ at and xj P AtzAs; and θij “ 0

otherwise. That is, xi corresponds to as (resp. at), and xj corresponds to x1 (resp. x2) in (I).

Then, for (30) to hold, we must have θk ¨ x ě 1, so we can set bk “ 1.

The additional constraints that require acyclicity of ą˚ are straightforward: for every cyclic

sequence of indices J “ pi, j, k, . . . , `, iq,

xij ` xjk ` ¨ ¨ ¨ ` x`i ď |J | ´ 2. (31)

While these acyclicity constraints are easy to understand, since we must write a constraint for

every cyclic sequence of indices, it may be computationally tough to list up: the number of

constraints explodes as the number of alternatives gets larger.

Example 4. Let X “ tx1, x2, x3, x4u, and consider a data set of three observations as below:

A1 “ tx1, x2, x3, x4u, A2 “ tx1, x2, x3u, A3 “ tx2, x3, x4u.

Note that we have a1, a2 P A1 X A2, a1 ‰ a2 and a2, a3 P A2 X A3, a2 ‰ a3. Hence the matrix

Θ has two rows, where the first row corresponds to observations p1, 2q, and the second row

corresponds to observations p2, 3q. As for observations p1, 2q, A1zA2 “ tx4u and A2zA1 “ H,

so we must have a1 “ x1 ą˚ x4, and thus the θ14 entry of θ1 is 1. As for observations p2, 3q,

A2zA3 “ tx1u and A3zA2 “ tx4u, so we must have a2 “ x2 ą˚ x1 or a3 “ x3 ą˚ x4. Hence

the entries θ21 and θ34 of θ2 is 1. This is summarized in Table 7. In this example with 4

alternatives, we only need to list up 25 constraints regarding acyclicity of ą˚.25 This number
25There are 4 constraints that require asymmetry, 6 constraints regarding cycles involving two alternatives, 9

constraints regarding three-alternative cycles, and 6 regarding four-alternative cycles.
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θ11 θ21 θ31 θ41 θ12 θ22 θ32 θ42 θ13 θ23 θ33 θ43 θ14 θ24 θ34 θ44 b
θ1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
θ2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Table 7: Matrix Θ and vector b defined for De Clippel and Rozen’s test in Example 4.

will explode as the number of alternatives gets larger.

In testing RSM/TRSM, we search for a traverse under which there exists an appropriate

selection Ź1 of binary relation Ź. Recall that once a traverse c is determined, binary relation

Ź is defined: x2 Ź x1 if xt P Bt
c for some t P T , x2 P Atzx1, and x1 čR x2. We need to check if

there exists an acyclic (or asymmetric and transitive) selection Ź1 such that for every x1 P Bt
c,

there exists x2 P At with x2 Ź1 x1. That is, Ź1 has to be chosen so that every alternative in Bt
c

is dominated by some other alternative in At.

By nature of the problem, similar to the case of De Clippel and Rozen, it can be rephrased

as the solvability of a 0-1 integer problem Θ¨x ě b, and the restriction of acyclicity (asymmetry

and transitivity) is required through some additional linear constraints. The solution vector

x “ px11, x21, . . . , xn1, . . . , x1n, . . . , xnnq is interpreted as a vector version of a selection Ź1 from

Ź: xij “ 1 if xi Ź1 xj , and xij “ 0 otherwise, and matrix Θ is an pnT ˆn2q matrix that tells us

candidates of where to define Ź1. More specifically, the matrix Θ consists of pnˆn2q-matrices

tΘtuTt“1, and the vector b consists of n-dimensional vectors tbtuTt“1. For i P t1, . . . , nu, i-th

row of Θt and i-th coordinate of bt correspond to information regarding alternative xi at

t-th observation. Denote them by θt
i “ pθ11, . . . , θn1, . . . , θ1i, . . . , θni, . . . , θ1n, . . . , θnnq and bti.

Though every entry θjk of θt
i depends on t P T and i P t1, 2, ..., nu, we omit them for the

sake of notational simplicity. By using these notions, the problem Θ ¨ x ě b is equivalent to

θt
i ¨ x ě bti, or

řn
j“1 θjixji ě bti for every t P T and i P t1, 2, ..., nu.

For every t P T and i P t1, 2, ..., nu, the entries of θt
i and bti are set to 0 except for the

following cases.

(I) Suppose that xj Ż xk. Since Ź1 is defined as a selection from Ź, we cannot have xj Ź1xk,

or equivalently xjk “ 0 must hold in such a case. To require this, for such a pair of

indices pj, kq, we let θjk “ ´n.

(II) Suppose that xi P Bt
c, where Bt

c is specified by a given traverse c. Then, xji “ 1 must

hold for at least one j such that xj Ź xi. To require this, we set θji “ 1 for all such j
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and bti “ 1.

Recall that for RSM model, this binary relation Ź1 has to be acyclic, and for TRSM model

it has to be asymmetric and transitive. These requirements will be made as constraints on

the solution vector x. RSM model requires that binary relation Ź1 is acyclic, which requires

x to satisfy (31). TRSM model requires that binary relation Ź1 is asymmetric and transitive.

These two constraints are assured as follows: for every i, j, k P t1, . . . , nu,

1 ´ xij ´ xji ě 0, (32)

xij ` xjk ď 2xik ` 1. (33)

Constraint (32) assures asymmetry of Ź1 and (33) assures transitivity of Ź1.

It is not difficult to check that, by constructing Θ and b as above, a data set is rationalizable

by an RSM model if and only if there exists a traverse c such that the problem Θ ¨ x ě b has

a solution x subject to constraint (31). A data set is rationalizable by a TRSM model if and

only if there exists a traverse c such that the problem Θ ¨ x ě b has a solution x subject to

constraints (32) and (33).

Example 4 (continued). Note that there are three cycles with respect to ąR: x1 ąR x2 ąR x1;

x2 ąR x3 ąR x2; and x1 ąR x3 ąR x2 ąR x1. Let c “ ppx1, x2q, px2, x3q, px1, x3qq, which

implies B1
c “ tx2, x3u, B2

c “ tx3u, B3
c “ H, and binary relation Ź is such that: x4 Ź x2 and

x1 Ź x3. Then the Θ matrix and b vector is defined as in Table 8.

This problem Θ¨x ě b has a solution x “ p0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0q, where x42, x13 “

1, and 0 elsewhere. This means that by setting x4 Ź1 x2 and x1 Ź1 x3, which is obviously

asymmetric and transitive, this data set is consistent with a TRSM model.

Appendix III: Full observation tests

Here we introduce full observation version characterizations of the limited consideration mod-

els, and describe how we adapt them to the limited data context in our simulation. The full

observation characterizations are based on observation of a choice function f : 2X Ñ X, where

fpAq P A for every A Ă X.

AFP, CFP, and AFP+CFP models are characterized by acyclicity of a binary relation

inferred from the choice function and the model: for AFP model, x2 ąAFP x1 if there exist
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θ11 θ21 θ31 θ41 θ12 θ22 θ32 θ42 θ13 θ23 θ33 θ43 θ14 θ24 θ34 θ44 b

θ1
1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ1
2 -4 -4 -4 -4 -4 -4 -4 1 0 -4 -4 -4 -4 -4 -4 -4 1

θ1
3 -4 -4 -4 -4 -4 -4 -4 0 1 -4 -4 -4 -4 -4 -4 -4 1

θ1
4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ2
1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ2
2 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ2
3 -4 -4 -4 -4 -4 -4 -4 0 1 -4 -4 -4 -4 -4 -4 -4 1

θ2
4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ3
1 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ3
2 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ3
3 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

θ3
4 -4 -4 -4 -4 -4 -4 -4 0 0 -4 -4 -4 -4 -4 -4 -4 0

Table 8: Matrix Θ and vector b defined for RSM/TRSM test in Example 4.

A,A1 Ă X such that x2 “ fpA1q, fpA1q ‰ fpAq, and A “ A1zx1; for CFP model, x2 ąCFP x1

if there exist A1, A2 Ă X such that fpA2q “ x2, fpA1q “ x1, and tx1, x2u Ă A2 Ă A1; for

AFP+CFP model, x2 ąAFP+CFP x1 if there exist A,A1, A2 Ă X such that fpA2q “ x2, fpA1q “

x1, fpA1q ‰ fpAq, A “ A1zx1 and tx1, x2u Ă A2 Ă A1. See Masatlioglu, Nakajima, and Ozbay

(2012) for AFP, and Lleras, Masatlioglu, Nakajima, and Ozbay (2017) and its working paper

version (2015) for CFP and AFP+CFP.

As shown in Manzini and Mariotti (2007), the choice function f is consistent with RSM

model if and only if it satisfies,

• Weak WARP: for every A,A1, A2 Ă X, tx1, x2u “ A Ă A1 Ă A2 and x2 “ fptx1, x2uq “

fpA2q implies x1 ‰ fpA1q, and

• Expansion: for every A,A1, A2 Ă X, x “ fpA1q “ fpA2q and A “ A1 Y A2 implies

x “ fpAq.

Au and Kawai (2011) show that the choice function is consistent with TRSM model if and

only if it satisfies Weak WARP, Expansion, and acyclicity of the following binary relation:

x2 ąTRSM x1 if there exists A1, A2 Ă X such that tx1, x2u “ A2 Ă A1, x2 “ fpA2q, and

fpA1q ‰ fpA1zx1q.

The above conditions are adapted to limited data environments as follows. Given a data

set O “ tpat, AtqutPT , for model M P tAFP, CFP, AFP+CFPu, the binary relation ąM is

defined in our context by rephrasing “there exists A Ă X” by “there exits t P T ,” and then
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we test acyclicity of this limited-data-based ąM. For example, the binary relation in the AFP

model is defined using a limited data set as follows: x2 ąAFP x1 if there exists s, t P T such

that x2 “ at, at ‰ as, and As “ Atzx1. Similary, the conditions for testing RSM model can be

molded into our context by rephrasing “for every A Ă X” by “for every t P T .” For example,

Weak WARP is expressed as: for every r, s, t P T , tx1, x2u “ Ar Ă As Ă At and x2 “ ar “ at

implies x1 ‰ as. The limited-data-based binary relation ąTRSM of TRSM model is defined in

a parallel fashion with AFP, CFP, and AFP+CFP models. Then we test TRSM by observing

whether the data set obeys Weak WARP, Expansion, and acyclicity of this ąTRSM.

Remark: For AFP, CFP, and AFP+CFP models, it is known that there are weak versions

of WARP that characterize these limited consideration models. In particular, Masatligolu,

Nakajima, and Ozbay (2012) show that there is an axiom WARP(LA) that is equivalent

to acyclicity of ąAFP; Lleras, Masatlioglu, Nakajima, and Ozbay (2017) show that axiom

WARP-CO is equivalent to the acyclicity of ąCFP; Lleras, Masatlioglu, Nakajima, and Ozbay

(2015) show that axiom LC-WARP* is equivalent to the acyclicity of ąAFP+CFP. Since these

equivalences break under a limited data set, we dealt only with the acyclicity conditions in

testing these models.
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