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Abstract

How does an economy fall into depression after an asset bubble bursts? To ad-

dress this question, we extend Matsuyama’s (2007) overlapping-generations model

with multiple technologies to a dynamic general equilibrium model with infinitely

lived agents. Our analysis focuses on a case of two technologies: one with high pro-

ductivity and another with low productivity. The crowd-in effect that asset bubbles
have on capital accumulation occurs in equilibrium, in which the high interest rates

resulting from asset bubbles crowd out low-productivity technology. When asset

bubbles with high-productivity technology collapse, a depression follows.
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1 Introduction

Since the beginning of modern monetary and financial systems in the 17th century, the

world has seen numerous financial crises. A financial crisis often occurs without warning;

macroeconomic variables such as growth and inflation rates may give no sign of a coming

crisis. Before a financial crisis, output and asset prices often grow synchronously at a

very high rate, asset prices deviate from their fundamental values, and asset bubbles

emerge. During the synchronized growth of output and asset prices, the presence of asset

bubbles seems to promote economic growth. History has repeatedly seen serious economic

depressions following a crash in asset prices. Therefore, financial crises seem to originate

from the bursting of asset bubbles.1 Motivated by these facts observed in our history,

we investigate both how asset bubbles promote economic growth and how an economy

falls into depression after the collapse of asset bubbles by constructing a dynamic general

equilibrium model with infinitely lived agents and multiple technologies.

An asset bubble is defined as the difference between an asset’s fundamental value and

its market value. Asset bubbles cannot exist in equilibrium in standard dynamic gen-

eral equilibrium models with an infinitely lived representative agent. To understand this

more concretely, consider a dynamic general equilibrium model with an infinitely lived

representative agent and no frictions. In this economy, a unique equilibrium path con-

verging to a steady state exists under mild conditions, and the steady-state interest rate

is always greater than the economic growth rate. Due to the latter property, the transver-

sality condition rules out any bubbly dynamic paths. In our model, however, potential

entrepreneurs face borrowing constraints. When borrowing constraints are binding in the

steady state without asset bubbles, the market interest rate becomes lower than the eco-

nomic growth rate, deviating downward from the marginal product of capital. In such a

case, the sum of the present values of future output becomes infinite, and asset bubbles

can appear in equilibrium despite that consumers’ preferences are locally nonsatiated and

their lifetime budget constraints are binding.

Our analytical framework is based on Matsuyama’s (2007) overlapping-generations

model with credit market imperfections and multiple technologies. Matsuyama considers

credit multiplier mechanisms, as in the literature on the macroeconomics of credit market

imperfections (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997). He empha-

sizes the composition effect of credit that shifts across investment projects with different

productivity levels and derives various dynamic economic behaviors that reflect the rela-

tionships among capital accumulation, technology choice, and the composition of credit

1Brunnermeier and Oehmke (2012) provide a historical overview of asset bubbles and financial crises.

According to them, early examples of asset bubbles include the Dutch tulip mania from 1634 to 1637,

the Mississippi Bubble from 1719 to 1720, and the South Sea Bubble in 1720. Recent examples include

the bursting of the Japanese asset price bubble in 1990, the Asian financial crisis in 1997, and the US

subprime loan crisis from 2007 to 2009.
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allocated to investment projects. In the present paper, we extend the Matsuyama model

to an infinitely lived agent model and introduce a bubbly asset into the model. In our

model, bubbles create the crowd-in effect, which stimulates capital accumulation. The

key elements in our extension to induce the asset bubble crowd-in effect are the net worth

effect of bubbles, which is stressed by Hirano et al. (2015) and Hirano and Yanagawa

(2016), and endogenous technology choice, which is an important element in Matsuyama’s

model to produce rich dynamics.

In Matsuyama’s two-period settings, the wealth effect that asset bubbles have on bor-

rowing constraints does not appear, and thus, there is no crowd-in effect. In fact, Mat-

suoka and Shibata (2012) introduce a bubbly asset into a version of Matsuyama’s (2007)

overlapping-generations model and show that asset bubbles always crowd out capital ac-

cumulation. Moreover, they show that in their case of two types of technologies, asset

bubbles can affect technology choice and may preclude the adoption of high-productivity

technology. Thus, in their model, bubbles have negative effects on capital accumulation

in two different ways. In contrast to Matsuoka and Shibata (2012), in the present paper’s

model, infinitely lived agents can be endowed with net worth that includes a bubbly as-

set in each period. The presence of asset bubbles increases the net worth, which relaxes

borrowing constraints, and thereby, the market interest rate increases (the net worth ef-

fect).2 This increase in the interest rate forces entrepreneurs to select high-productivity

technologies and reject low-productivity technologies (endogenous technology choice). As

a result, capital accumulation is stimulated, and output increases.

Researchers have long debated the macroeconomic effects of asset bubbles. Tirole

(1985) and Weil (1987) develop neoclassical growth models with asset bubbles and demon-

strate that asset bubbles impede capital accumulation by crowding out private invest-

ments, although asset bubbles also correct dynamic inefficiency and improve consumer

welfare. Similarly, the literature on endogenous growth investigates the crowd-out effect

of asset bubbles on private investments. For example, Grossman and Yanagawa (1992),

King and Ferguson (1993), and Futagami and Shibata (2000) show that asset bubbles

slow economic growth. Each of these studies develops overlapping generations models

and investigates only the crowd-out effect of asset bubbles.3 These previous models pre-

dict that the collapse of asset bubbles stimulates capital accumulation, but that prediction

is inconsistent with historical observations.

2This net worth effect of bubbles is emphasized by Hirano et al. (2015) and Hirano and Yanagawa

(2016), and most of the recent models featuring a crowd-in effect of bubbles contain the effect. Exceptions

are Takao (2015) and Hillebrand et al. (2016). In the model of Takao (2015), bubbles affect the size of

firms and stimulate the intensity of in-house R&D, leading to higher growth. In the model of Hillebrand

et al. (2016), bubbles raise the interest rate and thereby cause a savings glut, which injects greater

resources into the economy. When this effect dominates the standard crowd-out effect, bubbles stimulate

capital accumulation.
3Azariadis and Smith (1996), Boyd and Smith (1998) and Kunieda (2008) also analyze the crowd-out

effect of asset bubbles in financially constrained economies.
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In contrast to traditional approaches, several recent studies on economic growth and

bubbles consider not only the crowd-out effect but also the crowd-in effect of asset bub-

bles on private investments, thereby overcoming the shortcomings of traditional growth

models. Based on the modeling strategy, these recent studies can be categorized into two

groups. The first group, which includes Caballero and Krishnamurthy (2006), Farhi and

Tirole (2012), Martin and Ventura (2012), Ventura (2012), and Kunieda (2014), uses the

overlapping-generations modeling approach in the same way as Samuelson (1958), Tirole

(1985), or Blanchard (1985). The second group, which includes Kocherlakota (2009), Kiy-

otaki and Moore (2012), Aoki et al. (2015), Hirano et al. (2015), Hirano and Yanagawa

(2016), and Kunieda and Shibata (2016), uses infinitely lived agent models to derive asset

bubbles á la Tirole (1985).4 Our model belongs to the second group in that we extend

Matsuyama’s (2007) overlapping-generations model to an infinitely lived agent model and

show that asset bubbles can exist.5 Our analysis shows that bubbles have both crowd-in

and crowd-out effects on capital accumulation. It should be noted here that there are

two early studies addressing the same issue. The early studies that show a crowd-in effect

of bubbles are Mitsui and Watanabe (1989) and Olivier (2000). Using a continuous-time

overlapping-generalizations model, Olivier (2000) shows that bubbles on a productive as-

set enhance economic growth through the corresponding increase in the value of new R&D

firms, that is, the presence of bubbles in the R&D sector gives further incentives for new

firms to enter the R&D sector, and thus stimulates growth. Mitsui and Watanabe (1989)

construct a growth model with imperfect credit markets and show that the effect of bub-

bles on the growth rate can be either positive or negative, depending on the elasticity of

intertemporal substitution. More detailed explanations are provided below.

An important feature of the two groups is the existence of financial frictions. As Mar-

tin and Ventura (2012) and Carvalho et al. (2012) note, asset bubbles can promote capital

accumulation in the presence of financial frictions. The presence of asset bubbles increases

the market interest rate and thereby eliminates inefficient investments. Obviously, when

financial frictions exist, asset bubbles appear more easily in an overlapping-generations

model than in an infinitely lived agent model.6 The reason is that the former can exhibit

4By explicitly considering the role of banks in a model similar in structure to that of Hirano and

Yanagawa (2016), Aoki and Nikolov (2015) also study the bursting of asset bubbles, which may or may

not cause serious economic recessions.
5There is another strand of infinitely lived agent models that examine the relationship between asset

price bubbles and macroeconomic activities. Miao and Wang (2011) consider asset bubbles on productive

capital. In their model, firms holding bubbles directly weakens credit constraints and stimulates economic
activities. It should be noted that in Miao and Wang’s (2011) model, asset bubbles can exist even when

the total output growth rate is less than the interest rate in the bubbleless steady state. In this way, they
derive a new class of bubbles that differs from those observed in other studies á la Tirole (1985). The

aforementioned second group considers bubbles on intrinsically useless assets and analyzes the effects of

the bubbles on resource allocation through indirect channels such as changes in returns on savings and
the productivity distribution of active investors. In the models in the second group, asset bubbles occur

when the total output growth rate is greater than the interest rate in the bubbleless steady state.
6Kitagawa (1994, 2001a) show that in overlapping-generations models the existence of financial fric-
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two conditions—capital over-accumulation and financial market imperfections—that favor

the development of asset bubbles.7 Even if we do not use an overlapping-generations

model, the market interest rate can be smaller than the economic growth rate in equi-

librium, which is a necessary condition for asset bubbles to appear, as demonstrated by

Santos and Woodford (1997). The market interest rate in a borrowing-constrained econ-

omy with no asset bubbles will be smaller than the rate in an economy with perfect

financial markets, as the demand for borrowing will be lower in the former case. The

combination of a lower interest rate and heterogeneous agent productivity will cause the

equilibrium interest rate to be less than the economic growth rate. Kocherlakota (2009),

Kiyotaki and Moore (2012), Aoki et al. (2015), Hirano et al. (2015), Hirano and Yana-

gawa (2016), and Kunieda and Shibata (2016) model this situation with infinitely lived

agents and show that the presence of financial frictions is the crucial factor for generating

asset bubbles. In other words, without financial frictions, their models become like the

Ramsey-type models, in which equilibrium is unique and asset bubbles never occur.

An investigation into the structure of the extant models in the second group would

show that their modeling strategy derives from Bewley (1980) and Townsend (1980). In

the Bewley-Townsend model, infinitely lived agents face borrowing constraints and re-

ceive uninsured idiosyncratic income shocks in each period. Under these circumstances,

if fiat money is introduced into the economy, high-income agents will buy the fiat money,

and low-income agents will sell the money to smooth their consumption. Fiat money

cannot achieve the first best outcome, but it will render all agents better off. The struc-

ture of Mitsui and Watanabe’s (1989) model is similar to those of Bewley (1980) and

Townsend (1980). Mitsui and Watanabe (1989) develop a growth model with high- and

low-productivity technologies. In their model, there are infinitely many islands, sep-

arated from one another. On each island, there are many infinitely lived agents who

cannot trade with agents on other islands. Each agent faces a random relocation shock

to other islands. Agents remaining at the same islands can directly or indirectly utilize

the high-productivity technology, whereas agents who must move to other places at the

end of the period cannot reencounter other agents living on their original islands and

can utilize only the low-productivity technology. Under this circumstance, Mitsui and

Watanabe (1989) prove the existence of a bubbly equilibrium, in which the return from

bubbles is higher than that of the low-productivity technology, and show that the presence

of bubbles increases the economic growth rate by eliminating the low productivity tech-

tions relaxes the condition for bubbles to exist, that is, in the presence of financial frictions, bubbles

can exist even when the interest rate in the bubbleless equilibrium is higher than the economic growth

rate. Kitagawa (2001b) investigates the welfare implications of bubbles in this situation and shows that

bubbles can reduce the welfare of almost all generations
7As noted by Aiyagari and McGrattan (1998), Cozzi (2001), and Farhi and Tirole (2012), the infinitely

lived agent model with financial frictions and overlapping-generations models (without financial frictions)

share a common feature in the sense that the existence of financial frictions divides the horizons of the

infinitely lived agents.
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nology. The modeling strategy used in the second group of models is essentially the same

as that in Mitsui and Watanabe (1989).8 Specifically, borrowing-constrained agents in

the recent models in the second group face uninsured idiosyncratic productivity shocks in

each period, and the agents with lower productivity have an incentive to hold an intrinsi-

cally useless asset because they would otherwise receive lower returns on their investment

projects.9 In contrast to the extant models in the second group, our model is not based

on Bewley (1980) or Townsend (1980); we directly follow Matsuyama’s (2007) model,

in which the potential entrepreneurs face random credit rationing instead of uninsured

idiosyncratic productivity shocks.

In our model, multiple bubbly steady states can appear because of technology choice.

We provide the parameter conditions for multiple bubbly steady states to appear in equi-

librium. In particular, two technologies can lead to one bubbleless and two bubbly steady

states. One of two bubbly steady states is associated with a low-productivity technol-

ogy and the other with a high-productivity technology, whereas the bubbleless steady

state is associated with a low-productivity technology. Therefore, when asset bubbles

in the presence of high-productivity technology collapse, a depression will follow. Al-

though multiple bubbly steady states are also obtained by Gokan (2011), Tanaka (2011)

and Matsuoka and Shibata (2012) in the two-period overlapping-generations framework,

there are differences between their works and ours. Introducing financial frictions into

the standard two-period overlapping-generations model, Gokan (2011) shows that there

can exist two bubbly steady states and analyzes their dynamic properties. Matsuoka and

Shibata (2012) consider two types of technologies in a manner similar to the present paper

and demonstrate the possibility of multiple bubbly steady states. In these models, how-

ever, bubbles have only the crowd-out effect, and thus, when asset bubbles collapse, the

economy always experiences a boom, not a recession. In contrast, Tanaka (2011) shows

that pure bubbles, bubbles on useless assets, always have only the crowd-out effect, which

differs from our result. Considering bubbles on a productive asset in a manner similar to

that of Olivier (2000), however, Tanaka (2011) demonstrates that in the unstable bubbly

steady state, an increase in the size of bubbles stimulates economic growth. Thus, in

his model, the bursting of bubbles on a productive asset can cause a recession. In this

sense, his result is similar to ours. However, in his model, as he shows, a pure bubble,

one on a useless asset, always has only the crowd-out effect, whereas in our model, a pure

bubble can have a crowd-in effect. Moreover, Caballero et al. (2006) construct a model

of bubbles using an overlapping-generations model with a discontinuous technology. In

their model, at a critical level of capital, the production function jumps upward, and thus,

8Kocherlakota (1992) also demonstrates that an asset price bubble can occur when agents are infinitely

lived but face short-sales constraints.
9In Townsend’s (1980) model, although the alternation of high and low endowments among agents is

deterministic, the mechanism through which the intrinsically useless asset has a positive value is similar

to that in the extant models in the second group.
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there can be two bubbleless steady states, one of which is located below and the other

above the critical level. Using this model, they show that transitory bubbles converging to

the high bubbleless steady state exhibit a positive correlation with capital accumulation.

However, in their model, the amount of capital on a bubbly equilibrium path is always

smaller than that on the corresponding bubbleless equilibrium path, meaning the model

reveals a crowd-out effect relative to the bubbleless equilibrium.

We use simple phase diagrams to investigate the dynamic behavior of the economy.

The phase diagrams that we depict are very similar to that used by Tirole (1985), although

we employ an infinitely lived agent model. The phase diagrams help us to see the difference

between Tirole’s model and our model with respect to the mechanisms through which

asset bubbles arise. The phase diagrams also show that financial crises can accompany

the bursting of asset bubbles.

The remainder of this paper proceeds as follows. In the next section, we derive an

equilibrium dynamical system. In section 3, we discuss how asset bubbles’ crowd-in

effect on private investments is induced by endogenous technology choice, and we develop

simple phase diagrams to investigate the equilibrium dynamics of the model. In section

4, we provide an example of financial crises accompanying the bursting of asset bubbles.

We present our concluding remarks in section 5. The appendix presents the proofs of

propositions and lemmata.

2 Model

While the basic structure of our model follows Matsuyama’s (2007) overlapping-generations

model, we introduce an intrinsically useless asset as one of the saving methods. The econ-

omy is represented in discrete time, ranging from time 0 to infinity, and it consists of a

measure-one continuum of infinitely lived entrepreneurs and a measure-one continuum of

infinitely lived workers. The potential entrepreneurs are ex-ante homogeneous. However,

because of the non-convexity of investment projects and agency problems in the financial

market, the potential entrepreneurs are ex-post heterogeneous, facing credit rationing in

the financial market. In each period, some of them randomly become capital producers,

and others become savers, lending their net worth in the financial market or buying the

intrinsically useless asset.

As assumed in Weil (1992), Mankiw (2000), Gaĺı et al. (2004, 2007), Kocherlakota

(2009), and Kiyotaki and Moore (2012), workers are rule-of-thumb consumers; that is,

they consume their current labor income entirely in a “hand-to-mouth” manner and do

not save or borrow in the financial market. The presence of rule-of-thumb consumers does

not directly affect equilibrium dynamics in our model, but this assumption simplifies our

model and enables us to focus on the optimal behavior of entrepreneurs and the crucial
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role of asset bubbles in determining technology choice.10

2.1 Production

A general good, to be consumed or invested in projects, is produced by a production

function, Yt = F (Kt, Lt), where Kt represents capital and Lt labor at time t. The capital

depreciates entirely in one period, and F : [0,∞)× [0,∞)→ [0,∞) is continuous, exhibit-
ing constant returns to scale. The production function exhibits positive and diminishing

marginal products with respect to both Kt and Lt. We define f(kt) := F (Kt/Lt, 1),

where kt := Kt/Lt is the capital-labor ratio. We assume that F (Kt, Lt) is at least twice

differentiable. It follows that f 0(kt) > 0 > f 00(kt), and that f(kt) satisfies f(0) = 0 and

the Inada conditions limkt→0 f
0(kt) =∞, and limkt→∞ f

0(kt) = 0.

Because the capital and labor markets are competitive, the production factors are paid

their marginal products:

ρt = f 0(kt)

wt = f(kt)− ktf 0(kt),

where ρt is the rental rate and wt the wage rate.

We impose the following technical assumption to focus on a meaningful economic

situation:

Assumption 1 [ktf
0(kt)]0 > 0.

Note that Assumption 1 does not contradict the Inada conditions and holds if F (Kt, Lt)

is a Cobb-Douglas production function.

2.2 Entrepreneurs

Potential entrepreneurs in our model are not endowed with any labor. Let Ω denote

the whole set of potential entrepreneurs. To generate income, they turn over their net

worth. Let at(i) denote entrepreneur i’s net worth at time t, where i ∈ Ω. As assumed in

Matsuyama (2007), to be capital producers, potential entrepreneurs must borrow funds in

the financial market, but they face credit rationing in each period, whereby borrowers are

randomly selected from among the potential entrepreneurs in each period. The random

selection of borrowers is independent over time and across potential entrepreneurs. The

potential entrepreneurs who are not selected as borrowers must become savers. Because

the financial sector is competitive, the borrowing and saving interest rates are the same.

Figure 1 illustrates that an agent at time t becomes a capital producer with probability

10Mankiw and Zeldes (1991), Bertaut (1996), King and Leape (1998), and Guiso et al. (2002) provide

empirical evidence suggesting the existence of hand-to-mouth consumers.
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θt and a saver with probability 1 − θt. As the total population is equal to one, θt and

1− θt are the number of capital producers and the number of savers, respectively.

2.2.1 Returns

Entrepreneur i may become a saver or a capital producer in each period. The individual-

specific return, Rt+1(i), at time t+1 is determined by whether the entrepreneur becomes

a saver, a constrained capital producer, or an unconstrained capital producer at time t.

If entrepreneur i becomes a saver at time t, she lends her net worth, at(i), in the financial

market or purchases an intrinsically useless asset to receive the gross interest rate, rt+1. If

entrepreneur i becomes a capital producer at time t, she chooses only one of the J types

of investment projects (j = 1, 2, ..., J). Project j transforms one unit of general good at

time t into Φj units of capital at time t + 1, but the investment size that entrepreneur

i takes on is indivisible and fixed for entrepreneur i and is determined according to her

net worth share among all the potential entrepreneurs; that is, the investment size for

project j that entrepreneur i engages in isMjst(i) units of the general good, where st(i) :=

at(i)/
R
i∈Ω at(i)di is entrepreneur i’s net worth share. Although our assumption that an

entrepreneur’s investment size is based on her net worth share differs from Matsuyama

(2007), we might consider syndicated investment projects to motivate this assumption.11

11Under our assumptions, the return from the selected investment project is always higher than that on

saving, and any entrepreneur cannot implement the project alone. Thus, all entrepreneurs have incentives

to form a syndicate to undertake the investment project.
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To join a syndicated investment group associated with project j, each entrepreneur should

take up the responsibility of investing according to her net worth share. As in Matsuyama

(2007), we assume that
R
i∈Ω at(i)di < Mj, meaning that there are always savers and

borrowers in the economy. This assumption holds if the production function is not too

productive and Mj is very large.
12 Because entrepreneur i’s investment size, Mjst(i), is

greater than her net worth, at(i), she must borrow Mjst(i)− at(i) of the general good at
the interest rate rt+1 to obtain revenue ΦjMjst(i)f

0(kt+1). Mj is the average investment

size over capital producers because θt =
R
i∈Θt st(i)di is the number of capital producers

(and the probability that entrepreneur i becomes a capital producer), where Θt denotes

the set of entrepreneurs at time t. As Mj becomes large, each capital producer must

borrow more. If entrepreneur i becomes a capital producer, she acquires the following

return from her investment project: Rut+1 := rt+1 + [ΦjMjf
0(kt+1)− rt+1Mj]/

R
i∈Ω at(i)di.

As in Matsuyama’s (2007) model, to complete project j, both the profitability and bor-

rowing constraints must be satisfied. The profitability constraint is given by [ΦjMjst(i)f
0(kt+1)−

rt+1(Mjst(i)− at(i))]/at(i) ≥ rt+1, or equivalently,

Φjf
0(kt+1) ≥ rt+1. (1)

Due to agency problems in the financial market, borrowers face borrowing constraints.

An entrepreneur’s borrowing limit is associated with the pledgeability of her project rev-

enue. Because only a proportion of the revenue, λjΦjMjst(i)f
0(kt+1), can be pledged, an

entrepreneur i who engages in project j can borrow at most λjΦjMjst(i)f
0(kt+1)/rt+1;

that is, the borrowing constraint is

λjΦjMjst(i)f
0(kt+1) ≥ rt+1(Mjst(i)− at(i)), (2)

where λj ∈ [0, 1] can be considered the degree of borrowing constraints, with larger

values indicating more relaxed borrowing constraints. If entrepreneur i faces a bind-

ing borrowing constraint, her return, Rut+1, on the investment project becomes R
c
t+1 :=

(1 − λj)ΦjMjf
0(kt+1)/

R
i∈Ω at(i)di. If her borrowing constraint is not binding, her re-

turn remains Rut+1. However, it follows from st(i) = at(i)/
R
i∈Ω at(i)di that the borrowing

constraint (2) is essentially identical across all capital producers. This implies that if en-

trepreneur i’s borrowing constraint is not binding, all other capital producers’ borrowing

constraints are also not binding. In this case, the profitability constraint (1) holds with

equality, as will be seen below. Therefore, the return for unconstrained capital producers

is actually equal to rt+1. Given the profitability constraint (1) and supposing that project

12See footnote 5 in Matsuyama (2007) for further information on this point.
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j is selected, the individual-specific return, Rt+1(i), is obtained as follows:

Rt+1(i) =

(
rt+1 saver, unconstrained producer

Rct+1 constrained producer.
(3)

The individual-specific return cannot be insured because insurance markets are incomplete

in this economy. When the borrowing constraint (2) is binding, the profitability constraint

(1) holds with inequality. Therefore, it is straightforward to show that Rct+1 > rt+1.

2.2.2 Intrinsically Useless Asset

We assume that the total nominal supply of the intrinsically useless asset is constant,

given by B̄. Let pt be the price of the intrinsically useless asset at time t. Its real value

is Bt := ptB̄, as measured by the general good at time t. The intrinsically useless asset

is freely disposable, and therefore, Bt is non-negative. An asset bubble is defined as the

difference between an asset’s fundamental and market values. Thus, a bubble on the

intrinsically useless asset exists if Bt has a strictly positive value.

Holding an intrinsically useless asset is a saving method if the asset has a positive value.

For the intrinsically useless asset to have a positive value, the returns from holding the

asset must be greater than or equal to the interest rate, namely, pt+1/pt ≥ rt+1. Otherwise,
no one will buy the asset. Suppose that pt+1/pt > rt+1. Under this condition, no one lends

to capital producers. However, this inequality does not hold because limkt+1→0 f
0(kt+1) =

∞ in such a case. Therefore, in equilibrium, it holds that pt+1/pt = rt+1, and the law of

motion of the real value of the intrinsically useless asset is

Bt+1 = rt+1Bt. (4)

If entrepreneur i faces the individual-specific return Rt+1(i) = rt+1, she is willing to

purchase the intrinsically useless asset, given that the asset has a positive value. As we

will see below in the phase diagram analysis, there are savers and constrained capital

producers in the neighborhood of the bubbly steady state, where Rct+1 > rt+1. In this

case, only savers are willing to purchase the intrinsically useless asset, and constrained

capital producers do not hold the asset because the return from the investment project

is greater than the return on the asset. Savers practice arbitrage between purchasing the

intrinsically useless asset and lending in the financial market.
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2.2.3 Utility Maximization

Let cs(i) denote entrepreneur i’s consumption at time s. Entrepreneur i ∈ Ω, with a

discount factor β ∈ (0, 1), maximizes her expected lifetime utility

max Et

" ∞X
s=t

βs−t ln cs(i)

#
,

subject to

cs(i) + as(i) = Rs(i)as−1(i) =: Is(i), (5)

for s ≥ t ≥ 0, where Rs(i) is an individual-specific return on net worth given by Eq. (3)
and Is(i) is the income at time s. I0 is given. Et[·] is an expectation operator given the
information available until time t. Entrepreneur i faces uncertainty regarding her future

income due to credit rationing. Eq. (5) is the flow budget constraint. The current utility

maximization problem is in reduced form, in which Rs(i) already takes into account the

borrowing constraint (2), as presented in Eq. (3).13

From the utility maximization problem, entrepreneur i obtains the following Euler

equation:
1

ct(i)
= βEt

µ
Rt+1(i)

ct+1(i)

¶
. (6)

The transversality condition is given by

lim
τ→∞

βτEt

∙
at+τ (i)

ct+τ (i)

¸
= 0.

Because the current infinite-horizon maximization problem satisfies the conditions as-

sumed in Kamihigashi (2002), the transversality condition, along with the Euler equation,

is necessary and sufficient for optimality.14

From Eq. (5), it follows that Et[at+1(i)/ct+1(i)]=at(i)Et[Rt+1(i)/ct+1(i)] − 1. The
use of Eq.(6) yields at(i)/ct(i)=βEt[at+1(i)/ct+1(i)] + β. This equation and the law of

iterated expectations yield at(i)/ct(i)=β
τEt[at+τ (i)/ct+τ (i)]+β+β

2+...+βτ . Applying the

transversality condition, limτ→∞ βτEt[at+τ (i)/ct+τ (i)] = 0, we have at(i)/ct(i) = β/(1−β)
for all t ≥ 0. Substituting this equation into Eq.(5), we obtain the law of motion of net
worth as follows:15

at(i) = βRt(i)at−1(i) = βIt(i). (7)

Although entrepreneur i faces uncertainty with respect to her individual-specific return,

we obtain a simple law of motion of entrepreneur i’s net worth in Eq. (7). This is because

13We could consider the Kuhn-Tucker condition associated with the borrowing constraint (2), which

yields the same outcome as in the main text, but we take a shortcut because the individual-specific return

already incorporates the borrowing constraint.
14See also Ekeland and Scheinkman (1986) and Kamihigashi (2000).
15We can also apply the envelope condition to derive Eq. (7).
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the utility function is log-linear. Provided that entrepreneur i follows Eq. (7), her lifetime

budget constraint is binding.

2.3 Workers

The workers in our model are endowed with one unit of labor in each time period and

inelastically supply their labor to the production sector to earn wage income. As discussed

at the beginning of this section, the workers are hand-to-mouth consumers; that is, they

consume their current labor income entirely. Thus, their consumption program can be

given as

c̃t = wt

for all t ≥ 0, where c̃t stands for a worker’s consumption.16

2.4 Equilibrium

The equilibrium of our economy is characterized by the agents’ optimization conditions

and the market clearing conditions for the bubbly asset, capital, and financial loans. We

first derive an equation that is necessary for technology choice and the determination of

the equilibrium interest rate. From the profitability constraint (1) and the borrowing

constraint (2), we obtain

rt+1/f
0(kt+1) ≤ Φj

max{1, [1− at(i)/(Mjst(i))]/λj} . (8)

Eq. (7) rewrites entrepreneur i’s net worth share as st(i) = at(i)/(β
R
i∈Ω It(i)di), and

thus, Eq. (8) can be rewritten as

rt+1/f
0(kt+1) ≤ Φj

max{1, [1− βIt/Mj]/λj} , (9)

where It :=
R
i∈Ω It(i)di.

If project j existed such that rt+1/f
0(kt+1) < Φj/max{1, [1 − βIt/Mj]/λj}, every

potential entrepreneur who is selected to be a borrower would borrow and invest in project

16If the workers’ subjective discount factor is too small and they cannot borrow in the financial market,

they behave in a hand-to-mouth manner. Suppose that a worker at time t maximizes her lifetime utility
given by

max

∞X
s=t

β̃s−tc̃s,

subject to

c̃s + ãs = rsãs−1 + ws, ãs ≥ 0
for s ≥ t ≥ 0, where c̃s and ãs are her consumption and net worth at time s, respectively, ws is the wage
income at time s and β̃ is the subjective discount factor. Assuming that β̃ is a sufficiently small value
that β̃ < 1/rt for all t ≥ 0 in equilibrium, the worker consumes all her labor income in each time period;
that is, c̃t = wt for all t ≥ 0.
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j. In this situation, there would be excess demand for credit and the interest rate rt+1

would rise. Thus, for the financial market to clear, it follows that

rt+1/f
0(kt+1) = max

j

½
Φj

max{1, [1− βIt/Mj]/λj}
¾
. (10)

Next, we consider the financial market clearing condition, which is given byZ
i∈Ω\Θt

at(i)di =

Z
i∈Θt

[Mjst(i)− at(i)]di+ Bt, (11)

where project j is supposed to be selected at time t based on the technology choice achieved

on the right-hand side of Eq. (10). Again, Θt denotes the set of capital producers at time

t. Note that the left-hand side is the total savings, and the first term on the right-hand side

is the total loans to capital producers. Entrepreneur i, adopting technology j, produces

ΦjMjst(i) units of capital at time t+ 1, and thus, the total supply of capital is

kt+1 =

Z
i∈Θt

ΦjMjst(i)di. (12)

From Eqs. (4), (11), and (12), we compute the aggregate income of the potential

entrepreneurs as follows:

It =

Z
i∈Ω
Rt(i)at−1(i)di

=

Z
i∈Θt−1

h
ΦjMjst−1(i)f 0(kt)− rt(Mjst−1(i)− at−1(i))

i
di

+

Z
i∈Ω\Θt−1

rtat−1(i)di

= ktf
0(kt) + rtBt−1. (13)

From Eq. (7), the aggregate net worth of the economy is βIt = β(ktf
0(kt) + rtBt−1).

Combining Eqs. (4), (11), (12), and (13), we obtain the equilibrium law of motion of

capital:

kt+1 = Φjβktf
0(kt)− Φj(1− β)Bt. (14)

Given k0 > 0, the equilibrium dynamics of the economy is described by Eqs.(4), (10),

(13), and (14) such that kt > 0 and Bt ≥ 0 for all t ≥ 0.

3 Bubbly Steady States and Crowd-in Effects

To make the exposition as simple as possible, we impose a technical assumption.

Assumption 2 For project j, the following equation with respect to k has a unique solu-
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tion:

λjMjΦjf
0(k) = − β

1− β

∙
kf 0(k)− k

Φj

¸
+Mj. (15)

Eq.(15) solves for the capital in a bubbly steady state associated with project j, as

will be clarified in the proof of Proposition 1 given in the appendix. The configurations

of the right-hand and left-hand sides of Eq.(15) demonstrate that it has at a minimum

one solution under Assumption 1 and that the case of multiple solutions is very rare. In

particular, a large value of Mj would guarantee Assumption 2. If Eq.(15) has multiple

solutions, the dynamic behavior of the economy is highly complicated. We eliminate this

unnecessary situation for our purposes.

3.1 Single Technology

In this section, we investigate a single-technology case as our benchmark. Suppose that

entrepreneurs access only one project, J = 1. In this case, the ∆kt+1 := kt+1 − kt = 0

locus is

Bt =
1

1− β

µ
βktf

0(kt)− kt
Φ1

¶
.

The ∆kt+1 = 0 locus has an inverted-U shape in the first quadrant of the ktBt plane, start-

ing from the origin and increasing before beginning to decline at the maximum. As shown

in Figure 2, the∆kt+1 = 0 locus crosses the horizontal axis at pointA1(f
0−1(1/(βΦ1)), 0).17

From Eqs. (10) and (13), we obtain the interest rate as follows:

rt+1 =

(
λ1M1Φ1f 0(kt+1)

M1−β(ktf 0(kt)+Bt) if β(ktf
0(kt) + Bt) ≤M1(1− λ1)

Φ1f
0(kt+1) if M1(1− λ1) < β(ktf

0(kt) + Bt),

where we have used Bt = rtBt−1. From Eq. (4), the ∆Bt+1 := Bt+1 − Bt = 0 locus is

Bt = 0 or rt+1 = 1. Note that the rt+1 = 1 locus is divided into two sections,

Φ1f
0(kt+1) = 1, (R1)

when M1(1− λ1) < β(ktf
0(kt) + Bt), and

λ1M1Φ1f
0(kt+1) =M1 − β(ktf

0(kt) + Bt), (R2)

when β(ktf
0(kt) + Bt) ≤M1(1− λ1).

Proposition 1 Suppose that Assumptions 1 and 2 hold and that the entrepreneurs can

access only one project, J = 1. Then, two non-trivial steady-state equilibria exist in the

17When depicting Figure 2, from f 00(kt) < 0, the Inada conditions, and Assumption 1, it follows that
ktf

0(kt) is strictly concave, limkt→0 ktf
0(kt) = 0, limkt→0[ktf

0(kt)]0 =∞, and limkt→∞[ktf 0(kt)]0 = 0.
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economy, one a bubbleless steady state and the other a bubbly steady state, if and only if

M1

µ
1− λ1

β

¶
> f 0−1

µ
1

βΦ1

¶
1

Φ1
. (Condition 1)

Capital accumulation is lower in the bubbly steady state than in the bubbleless steady

state, implying that relative to the bubbleless steady state, asset bubbles crowd out private

investments in the bubbly steady state.

Proof. See the appendix.

Figure 2 shows the phase diagram embodying Proposition 1. In Figure 2, we focus on

the case in which the slope of the R2 locus is positive without loss of generality.18 This

18Under Assumptions 1 and 2 and Condition 1, the bubbly steady state is a saddle point regardless of

the slope of the R2 locus. Nevertheless, to draw the R2 locus in Figure 2, we discuss a condition under

which the slope of the R2 locus becomes positive for (Bt, kt) ∈ R2
+, where β(ktf

0(kt)+Bt) ≤M1(1−λ1),
in the following. The total differentiation of R2 yields the slope of the R2 locus as follows:

dBt
dkt

=
β[ktf

0(kt)]0[−λ1M1(Φ1)
2f 00(kt+1)− 1]

β − (1− β)λ1M1(Φ1)2f 00(kt+1)
.

The sign of dBt/dkt cannot be determined because the sign of −λ1M1(Φ1)
2f 00(kt+1)− 1 is inconclusive.

For instance, the R2 locus would be inverted-U shaped if a Cobb-Douglas production function were

used. When drawing phase diagrams, we assume that λiMi(Φi)
2f 00(kt+1) < −1 for (Bt, kt) ∈ R2

+, where

β(ktf
0(kt) + Bt) ≤Mi(1− λi), such that the slope of the R2 locus (and the corresponding locus for the

other project) can be positive.
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phase diagram is very similar to that depicted in Tirole (1985), although the mechanism

through which the bubbly steady state appears in our model is totally different from that of

Tirole (1985). In Tirole’s overlapping-generations model, the bubbly steady state appears

when capital is over-accumulated in the bubbleless steady state relative to the golden rule.

Because of capital over-accumulation, the interest rate becomes less than the economic

growth rate. This is a necessary condition for asset bubbles to appear in equilibrium.

In contrast, capital over-accumulation in the bubbleless steady state never occurs in our

model because the R1 locus does not intersect with the ∆kt+1 = 0 locus in the first

quadrant of the ktBt plane. Instead, the R2 locus intersects with the ∆kt+1 = 0 locus in

the first quadrant, where the borrowing constraint is binding. A bubbly steady state exists

in our model because the borrowers face borrowing constraints. Borrowing constraints

prevent credit-rationed entrepreneurs from borrowing as much as they want, and as a

result, the aggregate demand for borrowing decreases. When there are no asset bubbles

in the economy, the decreased demand for borrowing forces the interest rate downward

in equilibrium, and the interest rate becomes less than the economic growth rate. This

mechanism is reflected in Condition 1. As λ1 decreases and the borrowing constraint

becomes more severe, a bubbly steady state is more likely to appear. Additionally, as M1

becomes large, the bubbly steady state would arise more easily because the borrowing

constraint is more likely to be binding. For a bubbly steady state to arise, β should be

greater than λ1, meaning that for asset bubbles to appear, capital must accumulate to

the full extent according to the degree of the borrowing constraint. Note that in a single-

technology case, as in Tirole’s model, asset bubbles in the bubbly steady state have only

a crowd-out effect on private investments relative to the bubbleless steady state, as shown

in Figure 2.

Finally, we explain the reason that the transversality condition does not rule out

bubbles. Consider a path containing a bubble component. On the path, as (4) shows,

the bubble grows at the rate rt+1, which is the rate of return to savers. However, in this

model, each potential entrepreneur randomly change between being a saver and a capital

producer, and the capital producer faces a higher return than rt+1 because of credit

rationing, meaning that the effective rate at which entrepreneurs discount the future is

always not less than rt+1 and strictly higher than rt+1 when acting as a capital producer.

Thus, the transversality condition is satisfied.

3.2 Multiple Technologies

We now investigate a case similar to Figure 2A in Matsuyama (2007); that is, we assume

that there are only two technologies, J = 2. We also assume that there are trade-offs

between productivity and pledgeability in these two technologies, and we impose the

following parameter conditions.
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Assumption 3 Φ2 > Φ1 > λ1Φ1 > λ2Φ2, M2 > M1.

As noted by Matsuyama (2007), some advanced projects associated with leading-edge

technologies can be constrained by greater agency problems compared to other, less-

advanced projects associated with well-established technologies. The trade-offs between

productivity and pledgeability assumed in Assumption 3 are important in such a situation.

As shown in Figure 3, one of the two technologies is selected under Assumption 3, and

this illustrates the right-hand side of Eq. (10). Figure 3 and Eq. (14) yield the law of

motion of capital as follows:

kt+1 =

(
Φ1βktf

0(kt)−Φ1(1− β)Bt if β(ktf
0(kt) +Bt) ≤M2(1− λ2Φ2/Φ1)

Φ2βktf
0(kt)−Φ2(1− β)Bt if M2(1− λ2Φ2/Φ1) < β(ktf

0(kt) +Bt).
(16)

The interest rate is

rt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ1M1Φ1f 0(kt+1)
M1−β(ktf 0(kt)+Bt) if β(ktf

0(kt) +Bt) ≤M1(1− λ1)

Φ1f
0(kt+1) if M1(1− λ1) < β(ktf

0(kt) +Bt) ≤M2(1− λ2Φ2/Φ1)
λ2M2Φ2f 0(kt+1)

M2−β(ktf 0(kt)+Bt) if M2(1− λ2Φ2/Φ1) < β(ktf
0(kt) +Bt) ≤M2(1− λ2)

Φ2f
0(kt+1) if M2(1− λ2) < β(ktf

0(kt) +Bt).

(17)

There are various equilibrium cases with Eqs. (16) and (17). In particular, depending

on the scale of investment and pledgeability of output, there can exist a case in which asset

bubbles are supportive of the high-productivity, large-scale technology in equilibrium.
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The intuition behind the technology choice and the sustainability of asset bubbles is as

follows. As the size of asset bubbles grows, both crowding-out and crowding-in effects

appear simultaneously. On the one hand, a larger bubble competes with investment

and impedes capital accumulation. On the other hand, a larger bubble increases the

wealth of entrepreneurs and makes it more appealing for them to invest in the high

productivity, large-scale technology. Whether the latter effect gives rise to a new steady

state with the high-productivity, large-scale technology depends on the scale of investment

and pledgeability associated with the technology: if the investment scale is too high or

the pledgeability is too low, the asset bubbles that are required to generate a switch in

the technology choice are not sustainable in equilibrium. However, if the investment scale

is not too high and the pledgeability is not too low, there appears a bubbly steady state

associated with the high-productivity, large-scale technology in equilibrium.

Although there are various patterns of dynamic behavior of the economy with Eqs.

(16) and (17), we focus on an interesting case with two bubbly steady states and one

bubbleless steady state. This case presents a situation consistent with historical episodes

featuring the formation and collapse of asset bubbles in which asset bubbles promote

capital accumulation, and economic depressions follow the collapse of asset bubbles. In

what follows, we derive the conditions to obtain this case. For later reference, we derive

the locus, giving a cutoff of the technology choice in Eq.(17), as follows:

M2

µ
1− λ2Φ2

Φ1

¶
= β(ktf

0(kt) + Bt). (T1)

For a better understanding, refer to Figures 3 and 4 when considering Lemmata 1 to 3

below.

Lemma 1 (The boundary of the ∆kt+1 = 0 locus of project j = 2) Let us define k̃

such that f 0(k̃) + k̃f 00(k̃) = 1/Φ2. Additionally, suppose that Assumptions 1 to 3 hold.

Then, the ∆kt+1 = 0 locus of project j = 2 has two intersections with the T1 locus, point

D2, and point E2 (the capital value is greater at point D2 than at point E2), in the first

quadrant of the ktBt plane, if and only if

f 0−1
µ
1

βΦ2

¶
1

Φ2
< M2

µ
1− λ2Φ2

Φ1

¶
<

1

1− β

µ
f 0(k̃)− 1

Φ2

¶
βk̃. (Condition 2)

Proof. See the appendix.

In Condition 2, as M2 becomes large or λ2 becomes small, the T1 locus shifts upward

as the borrowing constraint associated with project j = 2 becomes severe. When the

borrowing constraint becomes very severe, such that the second inequality in Condition 2

fails to hold, the T1 locus no longer intersects with the ∆kt+1 = 0 locus of project j = 2.

Conversely, as M2 becomes small or λ2 becomes large, the T1 locus shifts downward as
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the borrowing constraint associated with project j = 2 becomes relaxed. If the borrowing

constraint is relaxed to the extent that the first inequality in Condition 2 fails to hold, a

bubbleless steady state with project j = 2 appears; however, we do not include this case

in our present study. Note that as β approaches one, Condition 2 is more likely to be

satisfied.

Lemma 2 (The bubbly steady state with project j = 2) Suppose that Assumptions

1 to 3 and Condition 2 hold. Let the capital value at point D2 be k
d. If

M2

µ
1− λ2Φ2

Φ1

¶
<

β

1− β
f 0−1

µ
1

Φ1

¶µ
1

Φ1
− 1

Φ2

¶
, (Condition 3)

then there exists a bubbly steady state with project j = 2, (point C2), the capital value of

which is in (f 0−1(1/Φ1), kd).19

Proof. See the appendix.

Condition 3 is a sufficient condition for the capital stock to be greater in the bubbly

steady state with project j = 2 than in the bubbleless steady state with project j = 1.

As Condition 3 shows, the borrowing constraint associated with project j = 2 may not

be too severe for the capital stock in the bubbly steady state with project j = 2 to be

19Note that f 0−1(1/Φ1) is the capital value at the intersection of the ∆kt+1 = 0 and R1 loci. See the
proof of Proposition 1 in the appendix.
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greater than f 0−1(1/Φ1). As in Condition 2, Condition 3 is more likely to be satisfied as

β approaches one.

Let the intersection point of the rt+1 = 1 locus of project j = 2 with the T1 locus be

F2. We define the locus associated with the borrowing-constrained part of the ∆Bt+1 = 0

locus of project j = 2 as

λ2M2Φ2f
0(kt+1) =M2 − β(ktf

0(kt) + Bt) (R3)

Then, F2 is the intersection of the R3 and T1 loci.

Lemma 3 (The boundary of the rt+1 = 1 locus of project j = 2)

Suppose that Assumptions 1 to 3 and conditions 2 and 3 hold. Let the capital value at

point F2 be k
f . Then, it follows that kf < f 0−1(1/Φ1).

Proof. See the appendix.

Suppose that Conditions 1 to 3 hold. The phase diagrams of two typical cases can

then be depicted based on Lemmata 1 to 3. In the first case, illustrated in Figure 4, M1

and M2 are relatively large; in the second case, illustrated in Figure 5, M1 and M2 are

relatively small.

Proposition 2 Suppose that Assumptions 1 to 3 and Conditions 1 to 3 hold. Then, one

bubbleless steady state and two bubbly steady states occur. The bubbleless steady state is

associated with project j = 1, and the two bubbly steady states are associated with project
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j = 1 and project j = 2. Capital accumulation is larger in the bubbly steady state with

project j = 2 than in the bubbleless steady state, whereas capital accumulation is smaller in

the bubbly steady state with project j = 1 than in the bubbleless steady state. This implies

that, relative to the bubbleless steady state, asset bubbles crowd in private investments in

the bubbly steady state with project j = 2 and crowd out private investments in the bubbly

steady state with project j = 1.

Proof. The claim follows from Lemmata 1 to 3 and Figures 3 and 4. ¤
Because the value of the intrinsically useless asset is not pre-determined, the equilib-

rium is indeterminate when asset bubbles appear. For any given initial capital k0, there

exists a continuum of initial values of the intrinsically useless asset, each one consistent

with a competitive equilibrium. Specifically, in both Figures 3 and 4, when the initial

capital is at an intermediate level such as k2,0 in the figures, there are many equilibrium

paths depending on B0. In particular, one equilibrium path converges to the higher bub-

bly steady state of point C2, and another converges to the lower bubbly steady state of

point C1. Many other equilibrium paths converge to the bubbleless steady state of point

A1. When the initial capital is at a higher level, such as k3,0, an equilibrium path con-

verges to the higher bubbly steady state of point C2, and many other equilibrium paths

converge to the bubbleless steady state of point A1.

Because there is a continuum of equilibria converging to the steady states with low-

productivity technology (project j = 1), one may wonder whether government policy can

prevent these equilibria and lead the economy to a unique equilibrium converging to the

higher bubbly steady state of point C2. Although a detailed discussion of institutional

backing of the intrinsically useless asset is beyond the scope of this paper, an appropriate

backing of the asset by the government, such as reserve requirements for the asset (e.g.,

Tirole, 1985) or the government’s direct purchase of the asset (e.g., Kunieda and Shibata,

2016), will enable the economy to attain a unique equilibrium converging to the higher

bubbly steady state of point C2.

When the initial capital is very small, such as k1,0, the outcomes in Figures 3 and 4

are different. As M1 and M2 increase (decrease), the R2, R3, and T1 loci shift upward

(downward), with the other loci remaining constant. Therefore, when M1 and M2 are

large (Figure 4) and the initial capital is very small, such as k1,0, no equilibrium path

converges to the higher bubbly steady state of point C2, but almost all equilibrium paths

converge to the bubbleless steady state of point A1, and one equilibrium path converges

to the lower bubbly steady state of point C1. This indicates that when M1 and M2 are

large and the initial capital is very small, the economy is trapped in underdevelopment.

In contrast, when M1 and M2 are small, there exists an equilibrium path converging to

the higher bubbly steady state of point C2, as Figure 5 shows. Even if the initial capital

is very small, a certain level of initial asset bubbles leads the economy to higher capital

accumulation when M1 and M2 are small.
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Our phase diagram analysis shows that under certain parameter conditions satisfying

Assumptions 1 to 3 and Conditions 1 to 3, there must exist competitive endogenous cycles

revolving back and forth between the two technological regimes. However, a detailed

analysis of such endogenous cycles is beyond the scope of this paper. We also note that,

as β approaches one, the right-hand sides of Conditions 2 and 3 go to infinity, with the

other parameters remaining constant. This implies that for a sufficiently large β, there

exist M1 and M2 such that Assumption 3 and Conditions 1 to 3 hold.

4 Financial Crisis with Asset Bubble Bursting

Like Farhi and Tirole (2012), we could consider two types of asset bubble bursts. The first

is caused by extrinsic uncertainty. The price of the intrinsically useless asset is not pre-

determined, and thus, asset bubbles collapse when sunspot variables negatively affect the

agents’ expectations of their presence. In other words, the agents’ expectations of asset

bubble bursts are self-fulfilling. The second type is caused by changes in fundamental

variables such as productivity, investment conditions, and the tastes of agents. As noted

by Brunnermeier and Oehmke (2012), an initial boom in asset prices is often supported

by a certain form of innovation, such as technological change or financial innovation.

Our analyses with multiple technologies essentially demonstrate that a new technology

associated with a new investment condition can create a new bubbly steady state. We

therefore focus on asset bubble bursts caused by changes in fundamental variables and

investigate both how the bubbles collapse and how depressions follow the burst when the

investment conditions for a project change.

Suppose that, as shown in Figure 6, the investment conditions for project j = 2

unexpectedly become severe at time t = τ, making M2 enlarged and/or λ2 reduced from

time τ onward, such that the second inequality in Condition 2 no longer holds. Under

these conditions, the borrowing constraint associated with project j = 2 becomes more

severe, and project j = 1 is more likely to be selected. In this case, from time t = τ

onward, both the T1 and R3 loci shift upward, but the ∆kt+1 = 0 locus with project

j = 2 remains unchanged. Because the second inequality of Condition 2 would no longer

hold, the T1 locus does not intersect with the ∆kt+1 = 0 locus under project j = 2, and

we do not have the bubbly steady state with project j = 2 from time t = τ onward, as

illustrated in Figure 7.

Suppose further that the economy initially starts at point P in Figure 7, which is on

the saddle path to the bubbly steady state with project j = 2 (point C2) before a sudden

change in the investment condition for project j = 2. The economy proceeds toward

point C2 until t = τ − 1. On the transitional path, both the asset bubbles and capital
continue to increase synchronously. However, the asset bubbles suddenly burst when

the investment condition for project j = 2 unexpectedly becomes severe at time t = τ .
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When asset bubbles burst, three possibilities arise for the economy depending on the

entrepreneurs’ expectations. In any case, soon after the bubbles burst, capital overshoots

in accordance with the dynamical system associated with project j = 2. This is because

the high productivity technology used was selected one period before the bursting of the

asset bubbles, and the crowd-out effect of asset bubbles is reduced at the moment when

the bubbles burst.

In the first case, the asset bubbles partially crash, and capital overshoots to point P1

in Figure 7. In this case, the economy converges to a bubbly steady state with project

j = 1 along the saddle path to the steady state. The second case is also that of a partial

crash; here, capital overshoots to point P2, but the economy converges to a bubbleless

steady state with project j = 1. The third case is a perfect crash. In this case, the asset

bubbles perfectly collapse, and capital overshoots to point P3, converging to a bubbleless

steady state with project j = 1. In view of the crowd-out effect of asset bubbles, the first

case is the worst-case scenario for capital accumulation.

5 Concluding Remarks

The technology choice analyzed by Matsuyama (2007) is a key factor for modeling the

crowd-in effect of asset bubbles in our infinitely lived agent model. In contrast to extant

models such as those of Kiyotaki and Moore (2012), Aoki et al. (2015), Hirano et al.
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(2015), Hirano and Yanagawa (2016), and Kunieda and Shibata (2016), the potential

entrepreneurs in our model do not receive uninsured idiosyncratic productivity shocks;

instead, they face uncertainty with respect to acquiring credit in the financial market.

Credit is randomly assigned to the potential entrepreneurs who need it; that is, they are

credit-rationed. Although these circumstances of the potential entrepreneurs are the same

as in Matsuyama’s overlapping-generations model, the extension of Matsuyama’s model

to our infinitely lived agent model is important for understanding the technology choice

induced by the presence of asset bubbles.

Unlike two-period overlapping-generations models such as Matsuoka and Shibata (2012),

our model allows each entrepreneur to use the returns from holding the intrinsically use-

less asset not only for consumption but also for accumulating net worth, as in Kiyotaki

and Moore (2012), Aoki et al. (2015), Hirano et al. (2015), Hirano and Yanagawa (2016),

and Kunieda and Shibata (2016). The wealth effect of asset bubbles relaxes borrowing

constraints and enables the entrepreneurs to more easily select a high productivity project

under more severe borrowing conditions. The relaxed borrowing constraints increase the

demand for borrowing in the financial market, which raises the market interest rate. As a

result, the profitability constraint associated with the low productivity project no longer

holds, and the high productivity project is selected. Entrepreneur net worth includes the

returns from both the investment project and holding the intrinsically useless asset, and

thus, the T1 locus slopes downward, creating a situation in which capital shrinks after a

financial crisis in our model.
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Two-period overlapping-generations models are sometimes criticized for the two-period

lifetimes of the agents. Retaining the important features of Matsuyama’s (2007) model,

we have extended his model to a dynamic general equilibrium model with infinitely lived

agents. Asset bubbles are empirical observations that need to be explained using quanti-

tative methods. Our extension enables us to calibrate Matsuyama’s model using actual

data, but the calibration exercise is beyond the scope of this paper. We leave this to be

addressed in future research.
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Appendix

Proof of Proposition 1

See also Figure 2, which helps to explain this proof. The non-trivial intersection of the

Bt = 0 and ∆kt+1 = 0 loci occurs at point A1(f
0−1(1/(βΦ1)), 0), the bubbleless steady

state. The value of capital at the intersection of the ∆kt+1 = 0 and R1 loci is computed

as f 0−1(1/Φ1) and is found to be greater than the capital value at point A1. This implies

that the value of Bt at this intersection is negative and cannot represent a bubbly steady

state. The capital value at the intersection of the ∆kt+1 = 0 and R2 loci, which we call

point C1, satisfies the following condition:

λ1M1Φ1f
0(k) = − β

1− β

∙
kf 0(k)− k

Φ1

¸
+M1. (A.1)

From Assumption 2, Eq. (A.1) has a unique solution for k. We denote the unique solution

by k̂. For point C1 to be a bubbly steady state, k̂ must be strictly less than f
0−1(1/(βΦ1));

otherwise, Bt becomes negative. It is straightforward to show that when k < k̂, the left-

hand side of Eq. (A.1) is greater than the right-hand side and that when k > k̂, the

left-hand side is less than the right-hand side. Therefore, C1 becomes a bubbly steady

state if and only if

λ1M1Φ1f
0
µ
f 0−1

µ
1

βΦ1

¶¶
< − β

1− β

∙
f 0−1

µ
1

βΦ1

¶
f 0
µ
f 0−1

µ
1

βΦ1

¶¶
− f 0−1

µ
1

βΦ1

¶
1

Φ1

¸
+M1,

or equivalently, if and only if M1Φ1(1− λ1/β) > f
0−1(1/(βΦ1)). Obviously, capital accu-

mulation is lower in the bubbly steady state than in the bubbleless steady state. ¤

Proof of Lemma 1

For the claim to hold, the following equation with respect to k must have two solutions

in (0, f 0−1(1/(βΦ2)):

g(k) :=

∙
kf 0(k)− k

Φ2

¸
β

1− β
=M2

µ
1− λ2Φ2

Φ1

¶
. (B.1)

Because g(k) is maximized at k = k̃, Eq. (B.1) has two solutions if g(k̃) > M2(1 −
λ2Φ2/Φ1). Therefore, Eq. (B.1) has two solutions in (0, f

0−1(1/(βΦ2)) if and only if

g(f 0−1(1/(βΦ2)) < M2(1−λ2Φ2/Φ1) < g(k̃) or, equivalently, if and only if f 0−1(1/(βΦ2))/Φ2 <
M2(1− λ2Φ2/Φ1) < g(k̃). ¤
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Proof of Lemma 2

By following the same path as the proof of Proposition 1 and by replacingM1, Φ1, and λ1

in Eq. (A.1) with M2, Φ2, and λ2, we find that the value of capital in the bubbly steady

state with project j = 2 satisfies the following equation:

λ2M2Φ2f
0(k) = − β

1− β

∙
kf 0(k)− k

Φ2

¸
+M2. (C.1)

It follows that kd is a solution for the following equation:

βkf 0(k) = (1− β)M2

µ
1− λ2Φ2

Φ1

¶
+

βk

Φ2
. (C.2)

From Condition2, we have

kd < f 0−1
µ
1

βΦ2

¶
, (C.3)

meaning that if kd is greater than the solution for Eq.(C.1), the bubbly steady state with

project j = 2 exists. From the configurations of the left-hand and right-hand sides of Eq.

(C.1), kd is greater than the value of capital in the bubbly steady state with project j = 2

if and only if

λ2M2Φ2f
0(kd) < − β

1− β

∙
kdf 0(kd)− k

d

Φ2

¸
+M2. (C.4)

With Eq. (C.2), Eq. (C.4) can be rewritten as

f 0−1
µ
1

Φ1

¶
< kd. (C.5)

Because kd is a greater solution for Eq. (C.2), the sufficient condition for inequality (C.5)

to hold is

βf 0−1
µ
1

Φ1

¶
f 0
µ
f 0−1

µ
1

Φ1

¶¶
> (1− β)M2

µ
1− λ2Φ2

Φ1

¶
+ βf 0−1

µ
1

Φ1

¶
1

Φ2
,

or, equivalently,

M2

µ
1− λ2Φ2

Φ1

¶
< f 0−1

µ
1

Φ1

¶µ
1

Φ1
− 1

Φ2

¶
β

1− β
. (Condition 3)

Finally, to show that the solution for Eq. (C.1) is greater than f 0−1(1/Φ1), it suffices for

us to verify that

λ2M2Φ2f
0
µ
f 0−1

µ
1

Φ1

¶¶
> − β

1− β

∙
f 0−1

µ
1

Φ1

¶
f 0
µ
f 0−1

µ
1

Φ1

¶¶
− f 0−1

µ
1

Φ1

¶
1

Φ2

¸
+M2.
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In fact, this inequality is exactly the same as Condition 3. ¤

Proof of Lemma 3

The rt+1 = 1 locus at point F2 is given by

λ2M2Φ2f
0(kt+1) =M2 − β(ktf

0(kt) + Bt), (D.1)

where kt+1 = Φ2βktf
0(kt) − Φ2(1 − β)Bt. From Eq. (D.1) and the T1 locus, we have

kt+1 = f
0−1(1/Φ1). Therefore, kf is the solution for the following equation:

kf 0(k)−M2

µ
1− λ2Φ2

Φ1

¶
1− β

β
= f 0−1

µ
1

Φ1

¶
1

Φ2
. (D.2)

From Eq. (D.2), it follows that kf < f 0−1(1/Φ1) if

f 0−1
µ
1

Φ1

¶
1

Φ1
−M2

µ
1− λ2Φ2

Φ1

¶
1− β

β
> f 0−1

µ
1

Φ1

¶
1

Φ2
.

In fact, this inequality is exactly the same as Condition 3. ¤
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