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Abstract

This paper examines how population aging caused by a decline in the
birth rate or a reduction in the mortality rate affects economic growth in an
overlapping generations model with a general demographic structure and a
sizable unfunded social security system. Through numerical simulations, we
show that a decline in the birth rate has non-monotonic effects on economic
growth, yielding a hump-shaped relationship between the population growth
rate and the economic growth rate, whereas a reduction in the mortality rate
has a monotonic positive effect on economic growth, yielding a monotonic
positive relationship between the population growth rate and the economic
growth rate. We also use our model to study how predicted and occurring
demographic changes in Japan affect that country’s economic growth rate.
We show that the growth effect of the predicted demographic changes in
Japan is initially positive but it may turn out to be negative from the mid
2030s forward. This paper also examines the growth and welfare effects of
a reduction in pension payments or an extension of the retirement age, and
shows that the pension payment reduction policy is better than the retire-
ment extension policy for both growth and welfare in response to population
aging.
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1 Introduction
During the last half century, the demographic structure of all developed nations
changed dramatically. Due to the decline in both birth and mortality rates, the
relative share of elderly persons in society increased rapidly, and this trend is pre-
dicted to persist for years to come. Based on estimates by the United Nations, Ta-
ble 1 depicts the observed and predicted trend in life expectancy at birth, the crude
birth rate, the population growth rate, and the old-age dependency ratio (the ratio
of the population over age 65 to the population aged 20-64) among the G7 coun-
tries. Because of the combined effects of the decline in birth and mortality rates,
the population growth rate will decrease and the old-age dependency ratio will in-
crease in all G7 countries. Such rapid population aging and the resulting increases
in social security expenses place enormous pressure on the sustainability of social
security systems in these nations (OECD, 2015). Japan is now confronting the
most severe such situation in the world. According to government projections by
the National Institute of Population and Social Security Research, the old age de-
pendency ratio in Japan is predicted to increase from 39% in 2010 to 84.4% in
2060. Oguro (2014) argues that the recent growth in the government debt-GDP
ratio in Japan is attributable primarily to the rapidly swelling social security costs
due to population aging.1 The rapid population aging and its consequences for
economic growth, as well as the solvency of Pay-As-You-Go (PAYG) social secu-
rity systems, is a primary concern for both policy makers and researchers in most
developed countries.

In this paper, we address how population aging caused by a decline in the birth
rate or a reduction in the mortality rate affects economic growth in an overlapping
generations model with a general demographic structure and a sizable unfunded
social security system. To do so, we employ the dynamic overlapping genera-
tions framework developed by Bruce and Turnovsky (2013 a,b) and Mierau and
Turnovsky (2014 a,b). We augment their analyses by examining the impact of
aging on economic growth under a sizable unfunded social security system.

In the model presented here, we use numerical simulations to demonstrate that
a decline in the birth rate has non-monotonic effects on economic growth, yielding
a hump-shaped relationship between the population growth rate and the economic
growth rate, whereas a reduction in the mortality rate has a monotonic positive
effect on economic growth, yielding a monotonic positive relationship between
the population growth rate and the economic growth rate. We also use our model
to study how the demographic changes occurring and predicted in Japan affect
the economic growth rate. We show that the growth effect of the predicted demo-

1According to the OECD economic outlook for 2015, Japan’s gross government debt reached
230% of GDP on a gross basis, the highest among all OECD countries.
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graphic changes in Japan is initially positive but it may turn out to be negative from
the mid 2030s forward. These results obtained in this paper are sharp contrast to
those of Mierau and Turnovsky (2014a). Employing a model without unfunded
social security, Mierau and Turnovsky (2014a) show that the relationship between
the population growth rate and the economic growth rate is monotonic, regard-
less of the source of demographic change. When the source of the demographic
change is a birth rate, they show that there is a monotonic negative relationship
between the population growth rate and the economic growth rate, whereas the
relationship is monotonically positive if the source of the demographic change is
a change in the mortality rate. They also calibrate their model to actual US data
and conclude that the decline in both birth and mortality rates over the last half
of the twentieth century in the US have led to a steady increase in the long run
economic growth rate.

The difference between our results and those of Mierau and Turnovsky (2014a)
comes from our explicit considerations of unfunded social security systems and
the resulting non-monotonic relationship between the population growth rate and
the economic growth rate, when the source of the demographic change is a change
in the birth rate. Under a sizable unfunded social security system, the decline in
the birth rate and the resulting decrease in population growth rate provide the two
competing influences on economic growth. On the one hand, the decline in the
population growth rate mitigates the dilution of aggregate capital to the larger
population, which enhances the accumulation of the aggregate capital and thereby
positively affects economic growth. We denote this positive growth effect of a
decline in the birth rate as the “anti-dilution effect.” On the other hand, as argued
by Bruce and Turnovsky (2013b), the existence of unfunded social security leads
to an increase in the aggregate consumption-capital ratio and thereby negatively
affects the accumulation of the aggregate capital as well as the economic growth
rate. We denote this negative growth effect of the social security as the “social se-
curity burden effect.” The decline in the birth rate and the resulting decrease in the
population growth rate positively affect the social security tax rate. Because the
negative growth effect of social security becomes more serious as the social secu-
rity tax rate becomes higher, the negative “social security burden effect” is more
likely to dominate (be dominated by) the positive “anti-dilution effect,” when the
population growth rate is sufficiently low (high) or the birth rate is sufficiently
low (high). Therefore, under a sizable unfunded social security system, we can
show that there is a hump-shaped relationship between the population growth rate
and the economic growth rate, when the source of the demographic change is a
change in birth rate. Due to these properties, suppose that the current social se-
curity system remains unchanged; in this case, the growth effect of the predicted
demographic changes in Japan is initially positive but it may turn out to be nega-
tive from the mid 2030s.
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Our numerical simulation results are partly consistent with recent empirical
findings. A growing empirical literature on the economic consequences of demo-
graphic change, including studies by Bloom and Canning (2004), An and Jeon
(2006), and Prskawetz et al. (2007), uses the age structure of the population (e.g.,
the share of population over age 65) as a proxy for demographic changes. Given
that the age structure changes owing to the combined effect of the fertility rate
and life expectancy, this proxy provides much richer information on demographic
changes for a determination of economic performance than the fertility rate and
life expectancy alone. These recent empirical studies observe a hump-shaped re-
lationship between the age structure and the per capita output growth rate, based
on the positive effect of a larger share of working age individuals in the popula-
tion on growth and the negative effect of a larger share of elderly individuals in
the population on growth. For example, using panel data from OECD countries
over the period from 1960 to 2000, An and Jeon (2006) find a hump-shaped rela-
tionship between the old-age dependency ratio and economic growth based on the
both cross-country regression and non-parametric kernel estimation. Further, us-
ing data from the EU-15 countries over the period from 1950 to 2005, Prskawetz
et al. (2007) observe a negative correlation between the initial population shares
of elderly people and growth in the following period but a positive correlation be-
tween growth and the working-age population. Based on their estimates and an
extensive literature review, Prskawetz et al. (2007) conclude that an increase in
the working-age population positively contributes to economic growth, whereas
an increase in either the old-age population or the young population negatively
affects economic growth.

Further, in the model presented here, we compare the growth and the welfare
implications of the pension payment reduction policy and the retirement extension
policy. At present, many OECD countries are introducing these types of policies
to maintain the solvency of PAYG social security systems. For example, the 2004
pension reform in Japan shifted away from the standard practice of increasing em-
ployee pension contributions to guarantee a 59% benefit level and instead capped
future contributions at 18.3%. In addition, Japan introduced a demographically
modified indexation program to ensure that the size of pension benefits was con-
sistent with the new contribution cap (i.e., the pension payment reduction policy).2

Moreover, Denmark, Greece, Hungary, Italy, Korea and Turkey have each linked
future increases in pension ages to changes in life expectancy (i.e., the retirement
extension policy). 3 This paper demonstrates that the both pension payment re-
duction policy and retirement extension policy positively affect economic growth

2The new pension level established by the 2004 pension reform was 50%. For further informa-
tion on the 2004 pension reform in Japan, see, for example, Komamura (2007).

3See OECD (2015) for additional details.
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and lifetime utility. However, the growth and welfare enhancing effects of the
pension payment reduction policy are larger than those of the retirement exten-
sion policy. Therefore, the pension payment reduction policy is better than the
retirement extension policy for both growth and welfare in response to population
aging.

This paper relates to recent theoretical studies that attempt to explain the
observed hump-shaped relationship between demographic change and economic
growth (e.g., de la Croix and Licandro, 1999; Fuster, 1999; Boucekkine, de la
Croix and Licandro, 2002; Miyazawa, 2006; Ito and Tabata, 2008; Tabata, 2015;
Hashimoto and Tabata, 2016).4 Among these studies, those by Ito and Tabata
(2008) and Tabata (2015) are closely related to our contributions because they
emphasize the design of the social security system as a factor to explain the ob-
served hump-shaped relationship between the age structure and economic growth.
Using a two period overlapping generations model with unfunded social security,
Ito and Tabata (2008) show that there is a hump-shaped relationship between the
population growth rate and economic growth. In economies in which the pop-
ulation growth rate is sufficiently low (e.g., developed countries), the decline in
the population growth rate increases the dependency ratio, increases the social
security tax burden of young agents, decreases the aggregate saving rate, and
thus negatively affects economic growth. In economies in which the population
growth rate is sufficiently high (e.g., developing countries), however, the decline
in the population growth rate mitigates a dilution of savings, increases the accu-
mulation of the aggregate capital, strengthens the learning-by-doing effect, and
thus positively affects economic growth. Although our paper shares numerous re-
search interests with these analyses, our research differs from them because we
employ the continuous time overlapping generations model with more general de-
mographic structures. Our mechanism to generate the negative growth effect of
unfunded social security is different from the one proposed in the existing two
period overlapping generations framework. In this sense, our research succeeds in
providing much richer implications regarding the effect of demographic changes
on economic growth.

This paper also relates to recent theoretical studies that attempt to incorporate
more realistic demographic structures into the continuous time overlapping gen-
erations model (e.g., de la Croix and Licandro, 1999; Boucekkine, de la Croix

4For example, de la Croix and Licandro (1999) and Boucekkine, de la Croix and Licandro
(2002) focus on the vintage nature of human capital and find a hump-shaped relationship between
population growth (or life expectancy) and per capita output growth. Moreover, Fuster (1999) and
Miyazawa (2006) focus on the role of accidental bequests and find a hump-shaped relationship
between life expectancy and per capita output growth. Furthermore, Hashimoto and Tabata (2016)
focus on the interactions between demographic changes and R&D-based innovations and find a
hump-shaped relationship between demographic change and per capita output growth.
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and Licandro, 2002; d’Albis and Augeraud-Véron, 2009 ; Heijdra and Mireau,
2012). 5 In particular, our paper is greatly indebted to a series of contributions
by Stephan Turnovsky and his co-authors (e.g., Bruce and Turnovsky, 2013 a,b
; Mierau and Turnovsky, 2014 a,b; Mierau and Turnovsky, 2016). Among them,
Bruce and Turnovsky (2013b) and Mierau and Turnovsky (2015) are closely re-
lated to our contributions because these analyses rigorously examine the impact of
unfunded social security reform on growth and welfare. 6 The basic structure of
the model presented in this paper is almost same as that of Bruce and Turnovsky
(2013b) except for some minor modifications. Our research differs from theirs,
however, because we are primarily concerned with the growth effect of popula-
tion aging under a sizable unfunded social security system. We also examine how
unfunded social security reform affects the relationship between the age structure
and economic growth. To the best of my knowledge, these issues have yet to be
examined rigorously in the literature. In this sense, this paper complements the
analyses conducted by Bruce and Turnovsky (2013b) and Mierau and Turnovsky
(2014a).

This paper is organized as follows. Section 2 presents the basic model. Sec-
tion 3 discusses its macroeconomic equilibrium properties. Section 4 reports the
numerical simulation results for the benchmark equilibrium. Section 5 demon-
strates how population aging caused by a decline in the birth rate or a reduction in
the mortality rate affects economic growth. Section 6 calibrates our model to ac-
tual and predicted demographic data in Japan. Section 7 compares the growth and
welfare implications of a pension payment reduction policy and the retirement ex-
tension policy. Section 8 concludes, while the Appendix contains technical details
regarding macroeconomic equilibrium properties.

2 The model
We consider the single sector endogenous growth model of overlapping genera-
tions with a general demographic structure and an unfunded social security system
as set out by Bruce and Turnovsky (2013 a,b) and Mierau and Turnovsky (2014
a,b). We augment their analyses by examining the impact of aging on economic
growth under a sizable unfunded social security system.7

5See, for example, the Introduction of Mierau and Turnovsky (2014 a) for a more complete
literature survey.

6Bruce and Turnovsky (2013b) examine this issue using the endogenous growth framework of
Barro (1990), whereas Mierau and Turnovsky (2015) use the neoclassical growth framework.

7Because we share numerous modeling strategies with Bruce and Turnovsky (2013 a,b) and
Mierau and Turnovsky (2014 a,b), we try to keep the model explanations simple by placing the
technical details in the Appendix. Further, we try to follow their model explanations for ease of
comparison.

6



2.1 Production
On the production side of the economy, we essentially follow the approach of
Romer (1986). The production sector comprises many individual firms that ex-
ert productive externalities on each other so that, in equilibrium, the aggregate
economy sustains endogenous growth.

There are L(t) symmetric firms in this economy. Firms face perfectly com-
petitive markets and maximize their profits. The production function of firm i at
time t is represented as Yi(t) = Z(t)Ki(t)αLi(t)1−α, where Yi(t) is individual output,
Ki(t) is individual capital, Li(t) is individual labor demand, Z(t) is the aggregate
level of technology in the economy, and α is the capital share of output. In per
worker terms, the production function can be expressed as: ŷi(t) = Z(t)k̂i(t)α,
where ŷi(t) ≡ Yi(t)

Li(t)
and k̂i(t) ≡ Ki(t)

Li(t)
, respectively.

The firm hires capital and labor, paying each their respective marginal prod-
ucts:

r(t) = αZ(t)k̂i(t)
α−1 − δ, (1)

w(t) = (1 − α)Z(t)k̂i(t)
α
, (2)

where r(t) is the return to capital (interest rate), w(t) is the wage rate and δ de-
notes the depreciation of capital. In accordance with Romer (1986), the interfirm
productive externality is given by Z(t) ≡ Zk̂(t)1−α so that the aggregate per worker
production function is of the AK-type, ŷ(t) ≡ Zk̂(t), where Z is the technology
index and k̂(t) ≡ K(t)

L(t) is the economy wide capital-labor ratio. Accounting for the
aggregate production externality, equilibrium factor prices are:

r = αZ − δ, (3)

w(t) = (1 − α)Zk̂(t). (4)

The interest rate remains constant over time, whereas the wage rate is proportional
to the economy wide capital-labor ratio, k̂(t).

2.2 Individual behavior
Consider an individual born at time v. The probability that this agent lives to
become t − v years old is governed by the survival function S (t − v), where S ′(t −
v) < 0, decreases with age. Given this function, the hazard rate, or instantaneous
probability of death, is given by:

µ(t − v) = −S ′(t − v)
S (t − v)

. (5)
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The probability that an individual dies before reaching age t − v is described by
the cumulative mortality rate:

M(t − v) =
∫ t−v

0
µ(τ)dτ. (6)

Combining equations (5) and (6), the survival function can be related to the mor-
tality function by:

S (t − v) = e−M(t−v), (7)

where S (0) = e−M(0) = 1 and S (D) = e−M(D) = 0, so that D defines the maximum
age that individuals can attain.

The expected lifetime utility of an individual born at time v is given by:

EΛ(v) =
∫ v+D

v
U(C(v, t))e−ρ(t−v)−M(t−v), (8)

where C(v, t) is the consumption at time t of an individual born at time v, and ρ
is the pure rate of time preference. We assume that the utility function is of the
iso-elastic form:

U(C(v, t)) =
C(v, t)1−1/σ

1 − 1/σ
, (9)

where σ is the inter-temporal elasticity of substitution, which we shall assume lies
in the range (0, r−π

r−ρ ). We shall also assume that individuals are relatively patient
and that the economy is dynamic efficient (i.e., r > ρ > π) so that this assumption
allows σ ∈ (0, σ∗), where σ∗ > 1. 8 Each individual chooses his/her consumption
and savings to maximize his/her discounted life time utility, (8), subject to the
budget constraint:

At(v, t) ≡
∂A(v, t)
∂t

= [r + µ(t − v)]A(v, t)+ [1− τs(t)]w(t)L(t − v)+ B(v, t)−C(v, t),
(10)

where A(v, t) are financial assets, τs(t) is the tax rate on labor income used to fund
social security, and B(v, t) is the household’s age and time-dependent social secu-
rity benefit, and L(t − v) ≤ 1 is the exogenously given fraction of the household’s
unit time endowment supplied as labor. We assume that households reduce the
fraction of time spent working as they age. That is L′(t − v) < 0. Given the
function L(t − v), the rate at which the labor supply fraction decreases with age is
given by: n(t − v) = − L′(t−v)

L(t−v) . The cumulative of this rate before reaching age t − v

is described by N(t − v) =
∫ t−v

0
n(τ)dτ. Therefore, analogous to the case of the

8While most estimates place σ well within the range (0,1), allowing σ to exceed unity is
desirable because it enables us to accommodate some of the more extreme estimates reported in
the literature.
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survival function S (t − v), we obtain L(t − v) = e−N(t−v), where L(0) = e−N(0) = 1
and L(s) = e−N(s) = 0 for s ∈ [R,D]. R defines the maximum age that individuals
can work and satisfies the following relationship R ≤ D.

To preserve tractability, as in Bruce and Turnovsky (2013b), we adopt a styl-
ized form of social security benefit, namely B(v, t) = bw(t)[1 − L(t − v)]. That
is, a household’s social security benefit is equal to a time-independent fraction b
(the benefit rate) of the earnings foregone as a result of the reduced labor supply
due to retirement. In fact, a household cannot receive a social security retirement
benefit until it reaches a certain age of eligibility (in Japan, 60 for a reduced ben-
efit). Households can, however, receive social security disability benefits before
the usual eligibility age for a social security retirement benefit (in Japan, 20 for a
disability benefits). The disability benefit is determined according to a modified
version of the usual social security benefit formula. Of course, the above pay-
ment scheme is rather abstract and cannot capture the complex structures of re-
cent social security systems in their entirety. Nevertheless, this simple framework
improves the tractability of the model greatly without changing the qualitative
implications of this paper.

Individuals are born without assets, have no bequest motive, and are not al-
lowed to have debt upon reaching the maximum attainable age, D. Therefore,
A(v, v) = 0, and individuals fully annuitize all their assets. Annuities are life-
insured financial assets that pay, conditional on the survival of the individual. In-
dividuals receive a premium on these annuities equal to their instantaneous prob-
ability of death, µ(t − v), and in return, if an individual dies, his assets flow to the
insurance company. Thus, the overall rate of return received by an individual on
his/her assets is r+µ(t−v). Alternatively, an individual may engage in borrowing.
In that case, he/she pays a premium of µ(t − v), and if he/she dies, his/her debts
are canceled.

Optimizing (8) subject to (10) with respect to C(v, t) and A(v, t), yields the
individual consumption Euler equation:

∂C(v, t)/∂t
C(v, t)

= σ(r − ρ). (11)

In addition, the agent must satisfy the transversality condition: A(v, v + D) = 09.
Solving (11) forward from time of birth, v, the individual’s consumption at

any age t ≥ v is linked to consumption at birth by the compounding relationship:

C(v, t) = C(v, v)eσ(r−ρ)(t−v). (12)

To solve for C(v, v), we integrate the budget constraint (10) forward from time v
and impose the transversality condition, A(v, v + D) = 0, to yield the individual’s

9In the absence of a bequest motive, individuals want to ensure that A(v, v+D) ≤ 0, and annuity
firms want to ensure that A(v, v + D) ≥ 0. Thus, the only feasible solution is A(v, v + D) = 0.
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intertemporal budget constraint operative from time v. Substituting (12) into that
constraint enables us to derive the following expression for C(v, v):

C(v, v) =
Ĥ(v, v)
∆(v, v)

, (13)

where

Ĥ(v, v) ≡
∫ v+D

v
{[1 − τs(τ)]w(τ)L(τ − v) + b(τ)[1 − L(τ − v)]w(τ)}e−r(τ−v)−M(τ−v)dτ,

(14)
is human wealth (the discounted lifetime income from after-tax wages and social
security benefits) and:

∆(v, v) ≡
∫ v+D

v
e−[(1−σ)r+σρ](τ−v)−M(τ−v)dτ, (15)

is the inverse marginal propensity to consume out of total wealth. From (13) and
(14), we observe that social security affects individual capital accumulation and
consumption through its impact on human wealth.

For the tractability of the following dynamic stability analysis, we decompose
the expression of Ĥ(v, v) into two parts.

Ĥ(v, v) = H(v, v) + E(v), (16)

where

H(v, v) ≡
∫ v+D

v
[1 − b(τ) − τs(τ)]w(τ)L(τ − v)e−r(τ−v)−M(τ−v)dτ,

E(v) ≡
∫ v+D

v
b(τ)w(τ)e−r(τ−v)−M(τ−v)dτ.

This decomposition greatly improves the tractability of the following stability
analysis.

2.3 Aggregate demography
Let P(t) denote the size of the total population at time t. The birth rate, β, is con-
stant, so that at every instant v, a cohort of size P(v, v) = βP(v) is born. Given
the mortality function, the number of individuals of cohort v still alive at time t is
P(v, t) = βP(v)e−M(t−v). Similarly, at every instant v, a mass of µ̄P(v) individuals
dies, where µ̄ is the average mortality rate across cohorts: µ̄ ≡

∫ t

t−D
µ(t − v)P(v, t)dv/P(t),

which, assuming the demographic steady state, defined in (21) below, is constant.
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In the absence of migration, the growth rate of the population is equal to π = β− µ̄,
which is therefore also constant. Hence, from the perspective of time v, the popu-
lation at time t is equal to:

P(t) = P(v)eπ(t−v). (17)

The relative weight of a cohort v at time t is:

P(v, t)
P(t)

= βe−π(t−v)−M(t−v) ≡ p(t − v), (18)

the dynamics of which are as follows:

pt(t − v)
p(t − v)

≡ ∂p(t − v)
∂t

= −[π + µ(t − v)]. (19)

Thus, the decline in the relative size of each cohort reflects both the overall popula-
tion growth rate and its individual mortality rate because of the arrival of newborns
and the mortality of the existing cohort.

Aggregating over the surviving cohort members at each point in time, the total
population at any time t is equal to:

P(t) = β
∫ t

t−D
P(v)e−M(t−v)dv. (20)

Substituting (17) into (20) yields the relationship:

β

∫ t

t−D
e−π(t−v)−M(t−v)dv = 1, (21)

which defines the demographic steady state (see Lotka, 1998). That is, (21) de-
fines a constraint linking of the birth rate, β, mortality structure, (M(t − v) and D),
and the overall population growth rate, π. For example, given the birth rate, β, and
mortality structure, (M(t − v) and D), (21) yields the implied population growth
rate, π. This relationship is an integral component of any consistently specified
aggregate demographic structure.

Here, suppose that the birth rate, β, mortality structure, (M(t − v) and D),
and the overall population growth rate, π, are constant (i.e., time invariant demo-
graphic structure) and (21) depends only on age s ≡ t− v but not on calendar time
t. Therefore, we can rewrite (21) as

β

∫ D

0
e−π(s)−M(s)ds = 1. (22)

Analogously, from (18), the relative size of a cohort on age s ≡ t − v at any time t
is rewritten as

p(s) = βe−πs−M(s), (23)
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which also depends only on age s ≡ t − v. Therefore, suppose that the birth rate,
β, mortality structure, (M(t − v) and D), and the overall population growth rate,
π, are constant (i.e., time invariant demographic structure), the relative size of a
cohort on age s ≡ t − v at any time t is also constant in the demographic steady
state.

2.4 Aggregate behavior
Employing the following generic aggregator function, we can obtain the aggregate
per capita equivalents of the individual quantities:

x(t) ≡
∫ t

t−D
p(t − v)X(v, t)dv = β

∫ t

t−D
e−π(t−v)−M(t−v)X(v, t)dv, (24)

where x(t) is the aggregate per capita value of X(v, t).
The straightforward application of (24) implies that aggregate per capita con-

sumption is given by: c(t) ≡
∫ t

t−D
p(t − v)C(v, t)dv. Taking the time derivative of

c(t) and substituting (11) and (18) into it, the dynamics of c(t) can be expressed
as:

ċ(t) = σ(r − ρ)c(t) − Φ(t), (25)

where

Φ(t) ≡
∫ t

t−D
µ(t − v)p(t − v)C(v, t)dv − βC(t, t) + πc(t).

Here, Φ(t) is the generational turnover term. It measures the net reduction in the
growth rate of aggregate per capita consumption due to the arrival of new indi-
viduals without assets, combined with the departure of individuals with positive
assets.

Further, applying (24) to assets, we can define aggregate per-capita asset hold-
ings as: a(t) ≡

∫ t

t−D
p(t − v)A(v, t)dv. Taking the time derivative of a(t) and substi-

tuting (10) , (18), and B(v, t) = bw(t)[1 − L(t − v)] into it, the dynamics of a(t) is
given by:

ȧ(t) = (r − π)a(t) + w(t)l(t) − c(t) + {bw(t)[1 − l(t)] − τs(t)w(t)l(t)}, (26)

where l(t) ≡
∫ t

t−D
L(t − v)p(t − v)dv is the fraction of the aggregate labor force rel-

ative to the overall population (i.e., l(t) = L(t)
P(t) ). The curly bracket in the right hand

side of (26) describes the contribution of social security to wealth accumulation.
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Here, suppose that the birth rate, β, mortality structure, (M(t − v) and D), the
overall population growth rate, π, and the labor supply structure, (L(t − v) and
R), are constant (i.e., time invariant demographic structure), the fraction of the
aggregate labor force relative to the overall population at any time t, l(t), depends
only on age s ≡ t − v but not on calender time t. Thus, we can rewrite it as
l(t) =

∫ D

0
L(s)p(s)ds ≡ l, and therefore the fraction of the aggregate labor force

relative to the overall population at any time t is also constant in the demographic
steady state.

2.5 The government budget constraint
We assume that the social security program is financed on a Pay-As-You-Go
(PAYG) basis and funded by a dedicated tax on the earnings of labor. As outlined
above, individuals pay their contribution through a tax on wage income, τs(t),
and receive a benefit, B(v, t), based upon the payment scheme specified above
(i.e., B(v, t) = bw(t)[1 − L(t − v)]). Assuming no other government spending
and abstracting from debt, the government faces the following balanced-budget
constraint:

τs(t) = b
1 − l(t)

l(t)
= bd(t), (27)

where d(t) ≡ 1−l(t)
l(t) is the beneficiary-contributor ratio or the dependency ratio.

Here, as explained above, suppose that the birth rate, β, mortality structure,
(M(t − v) and D), the overall population growth rate, π, and the labor supply
structure, (L(t−v) and R), are constant (i.e., time invariant demographic structure),
the relation l(t) = l holds. Thus, we can rewrite equation (27) as τs(t) = bd ≡
τs, where d ≡ 1−l

l , and therefore, the social security rate is also constant in the
demographic steady state.

3 Equilibrium
We now derive the economy-wide equilibrium and describe its properties. In
equilibrium, both the labor and the capital market must clear. In the absence
of government bonds, all non-human wealth must be held in the form of physical
capital so that a(t) = k(t) and, therefore, ȧ(t) = k̇(t). Labor market clearance is
achieved when the total demand for labor is equal to the all supplied labor, namely,
L(t) = l(t)P(t).
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3.1 Existence
In this subsection, we first assume that the economy is always on its balanced
growth path where equilibrium output and capital per capita grows at a constant
rate of γ. The local stability analysis in the next subsection provides some justi-
fications for this assumption. Noting the definitions of k(t) ≡ K(t)

P(t) and k̂(t) ≡ K(t)
L(t) ,

and substituting a(t) = k(t), (3), (4) and (27) into (26) , the dynamics of the aggre-
gate per capita capital, k(t), is given by

k̇(t) = Zk(t) − (δ + π)k(t) − c(t),
= (r − π)k(t) + (1 − α)Zk(t) − c(t).

(28)

Noting that c(t)
k(t) =

c(t)
w(t)l(t)

w(t)l(t)
k(t) , the economy grows at a rate:

γ(t) ≡ k̇(t)
k(t)
= Z − (δ + π) − c(t)

k(t)
,

= r − π + (1 − α)Z[1 − c(t)
w(t)l(t)

].
(29)

Along the balanced growth path and noting l(t) = l, d(t) = d and τs(t) = τs under
the time invariant demographic structure, the wage rate will grow at the common
growth rate of γ. Hence, we can write aggregate per capita consumption as:

c(t)
w(t)

=

∫ t

t−D
p(t − v)

C(v, v)
w(v)

e[σ(r−ρ)−γ](t−v)dv (30)

Thus, substituting (13) to (17), (30), d = 1−l
l and τs = bd into (29), the growth rate

of the economy is described implicitly as:

γ = r−π+(1−α)Z[1− (1 − b − bd)Ω(r − γ) + bφ(r − γ)
φ((1 − σ)r + σρ)

φ(γ + π − σ(r − ρ))
Ω(π)

] ≡ f (γ),

(31)
where φ(x) ≡

∫ D

0
e−xs−M(s)ds and Ω(x) ≡

∫ D

0
L(s)e−xs−M(s)ds. Further, the demo-

graphic steady state (22) is rewritten as

βφ(π) = 1. (32)

The equilibrium growth rate γ of this economy is completely characterized by
equations (31) and (32). For example, given the birth rate, β, mortality structure,
(M(t − v) and D) and labor supply structure (L(t − v) and R), the definition of d(t)
and (32) yield the implied dependency ratio, d, and the population growth rate,
π. By substituting these values into (31), the equilibrium growth rate γ of this
economy is determined implicitly as (31).
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Being nonlinear, (31) suggests the potential existence of more than one equi-
librium growth rate, and indeed, inspection of (31) and (32) reveal that γ = r − π
is an equilibrium growth rate, satisfying γ = f (γ). As in Mierau and Turnovsky
(2014a), however, Appendix A shows that this solution is incompatible with the
household’s intertemporal budget constraint because it violates the transversality
condition, and thus we can rule out this solution. Moreover, under some mild as-
sumptions regarding the properties of the labor supply fraction function, L(t − v),
Appendix B confirms that there exists a unique consistent equilibrium growth rate
γ∗ satisfying (31) and (32). For example, in the following Section 4, we numer-
ically solve (31) and (32) given the parameterized demographic functions, and
confirm that there exists a unique consistent equilibrium growth rate γ∗ satisfying
(31) and (32) for plausible parameter values. Point A of Figure 1 in Section 4-2 il-
lustrates the equilibrium growth rate by plotting both the left-hand and right-hand
sides of (31) for our benchmark parameter values, defined below.

3.2 Local stability
In general, the macrodynamic equilibrium of this economy is described by the
pair of equations of (25) and (28). It implies that we must take into account the
dynamics of the intergenerational turnover term Φ(t). As discussed by Mierau
and Turnovsky (2014a), for general mortality structures this term leads to a high
order differential difference equation system that is generally intractable. The
procedure developed by Mierau and Turnovsky (2014a), however, enables us to
obtain a tractable local approximation of the dynamics. In the following analysis,
we basically follow the local approximation method developed by Mierau and
Turnovsky (2014a).

From (15) and (16), we rewrite ∆(t, t) and H(t, t) as

∆(t) ≡ ∆(t, t) ≡
∫ t+D

t
e−[(1−σ)r+σρ](τ−t)−M(τ−t)dτ,

H(t) ≡ H(t, t) ≡
∫ t+D

t
(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ.

By defining the stationary variables x(t) ≡ c(t)
k(t) , y(t) ≡ H(t)

k(t) , e(t) ≡ E(t)
k(t) and ∆(t), we

can show that the local dynamics in the neighborhood of the steady state,(x̃, ỹ, ẽ,
∆̃), can be expressed as:
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ẋ(t)

ẏ(t)

ė(t)

∆̇(t)


=


x − β y+e

∆x
β

∆

β

∆
−β y+e

∆2

y (1 − b − bd) (1−α)Z
ly 0 0

e 0 b (1−α)Z
le 0

0 0 0 1
∆




x(t) − x̃

y(t) − ỹ

e(t) − ẽ

∆(t) − ∆̃


(33)

The derivation of (33) is explained in Appendix C. To establish the stability char-
acteristics of the system (33), we must analyze its four eigenvalues, λ1, λ2, λ3, λ4.
For example, if we suppose that these eigenvalues are all positive, the system is lo-
cally unstable. An inspection of (33) indicates that the relation λ4 =

1
∆
> 0 holds;

however, it is difficult to confirm the sign of other eigenvalues analytically. To
obtain further insight regarding stability properties, in Section 4, we numerically
compute the equilibrium values of λi, (i = 1, 2, 3, 4). Numerical simulation results
for very general demographic functions and a wide variety of underlying parame-
ter values reveal that for any plausible parameter, all four eigenvalues are positive,
which indicate that the equilibrium dynamics (33) are locally unstable. Therefore,
the only viable equilibrium is for the system to always be on its balanced growth
path, as in Romer (1986) and Mierau and Turnovsky (2014a). Below, we focus
our analysis on the case where the economy is always on its unique consistent
equilibrium balanced growth path.

3.3 Welfare
Substituting (4), (12) and (13) into (8), along the balanced growth path with time
invariant demographic structure, the expected lifetime utility of a new-born house-
hold at time t is expressed as a multiple u of the wage rate at time t, that is,

EΛ(t) =
C(t, t)1−1/σ

1 − 1/σ

∫ t+D

t
e−[(1−σ)r+σρ](τ−t)−σM(τ−t)dτ,

= uw(t)1−1/σ,

= uw(0)1−1/σe(1−1/σ)γt,

(34)

where

u ≡ 1
1 − 1/σ

[(1 − b − bd)Ω(r − γ) + φ(r − γ)]1−1/σφ((1 − σ)r + σρ)1/σ,

and s = t − v. Here, note that the relation u < 0 (resp. u > 0) holds, if σ ∈
(0, 1) (resp. σ > 1). Equation (34) indicates that given the utility multiplier, u,
the higher equilibrium growth rate, γ, implies higher utility (i.e., ∂EΛ(t)

∂γ
= (1 −
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1/σ)EΛ(t) ≥ 0). Moreover, suppose that initial wage rate w(0) being compared
is the same for an economy that is growing faster than another, and the value of
its utility multiplier u is larger, we can conclude that all generations enjoy higher
utility. We use these properties of the expected lifetime utility to analyze the
welfare effects of social security in the following numerical simulation analysis.

4 Numerical simulations for benchmark equilibrium
To obtain further insights, we resort to numerical simulations of our model. In the
first exercise, we examine how population aging caused by a decline in the birth
rate or a reduction in the mortality rate affects economic growth under a sizable
unfunded social security system. The second analysis addresses how demographic
changes occurring and predicted in Japan affect economic growth. The final anal-
ysis examines the growth and welfare effects of a reduction in pension payments
or an extension of retirement age in response to population aging. Before report-
ing these simulation results, however, we select functional forms of demographic
functions and illustrate some of their basic properties.

4.1 Model parameterization
For the survival function, we adopt the parametric survival function proposed by
Boucekkine et al. (2002):

S (t − v) = e−M(t−v) =
µ0 − eµ1(t−v)

µ0 − 1
, (35)

where µ0 and µ1 are parameters governing youth and old age mortality. As we
do not consider childhood, we normalize the function so that birth corresponds to
age 20. The maximum attainable age, D, for an individual entering the economy
at age 20 is determined by S (t − v) = 0 and therefore, satisfies D = [ln(µ0)]/µ1.
We estimate the two parameters, µ0 and µ1, by nonlinear least squares using life
tables for Japan in 2010 and obtain a tight fit (R̄2 = 0.996) with highly significant
parameter estimates of µ0 = 145.734 and µ1 = 0.0607205. These parameter values
imply that the oldest survival age is 102.0445 or D = 82.0445, the life expectancy
at age 20 is 66.1425 and the life expectancy at age 65 is 24.9432, which closely
approximates the life expectancy of 66.67 years for a woman of age 20, and 23.80
years for a woman of age 65 reported in the life table for Japan in 2010. 10 11

10Table 4 and Figure 7 in Appendix E shows our estimated results and the resulting survival
function.

11The longer life expectancy of women may be appropriate for our analysis because the social
security benefit in Japan is partially a dual survival annuity, and the majority of beneficiaries are
married.
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For the labor supply fraction function, following Bruce and Turnovsky (2013b),
we adopt the following functional form:

L(t − v) = e−N(t−v) =
l0 − el1(t−v)

l0 − 1
, (36)

where l0 and l1 are parameters governing the labor supply fraction. The oldest
working age, R, for an individual entering the economy at age 20 is given by
L(t − v) = 0 and therefore satisfies R = [ln(l0)]/l1. We assume that the oldest
age a worker remains in the labor force is 78. Thus, the oldest working age is
set to R=58, and the value of ł0 is adjusted to satisfy ln(ł0) = Rł1. Then, we set
the value of l1 so that the expected retirement (and claiming) age of an individual,
conditional on survival, is 65, and so that the labor force participation rate at age
65 is 64.5%, in accordance with observed values.12 These values are achieved by
setting l0 = 65.1049 and l1 = 0.072.

To satisfy the demographic steady state, (22), we set the birth rate such that the
population growth rate becomes almost zero (π = 0.0016), as is also observed em-
pirically. This leads to a birth rate of 1.6% (b = 0.016), which is somewhat higher
than the 0.8% that is observed empirically. Further, the social security benefit is
set to b = 0.4, which is consistent with the current replacement ratio in Japan.13

These demographic and social security parameter values imply a dependency rate
of 49.9% (d = 0.499) and social security tax rate (τs = 0.1996). 14

Table 2 summarizes the remaining key structural parameters for the baseline
economy. To ease the comparison, we employ the standard parameter values used
in Mierau and Turnovsky (2014 a). The elasticity of capital is α = 0.35 and
the depreciation rate is δ = 0.05. The aggregate level of technology equals Z =
0.3286, which yields a real interest rate of 6.7%. With respect to preferences, we
set the intertemporal elasticity of substitution to σ = 0.75 and the rate of time
preference at birth to ρ = 0.035.

4.2 Benchmark equilibrium
Figure 1 illustrates the equilibrium growth rate by plotting both the left-hand and
right-hand sides of (31). Point A is the consistent equilibrium growth rate and
point B is the inconsistent equilibrium discussed in Section 3-1. Figure 1 confirms

12According to the Labor Force Survey in Japan, the labor force participation rates of the pop-
ulation aged 60 to 64 was 60.5 % in 2010.

13According to the OECD (2015), the net pension replacement in Japan was 40.4% for both
men and women.

14The old age dependency ratio (the ratio of the population over age 65 to the population aged
20 to 64) in Japan was 39% in 2010, whereas the contribution rate of employees’ pensions in Japan
was 16.058 % in 2010.
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that there exists a unique consistent equilibrium growth rate γ∗ for benchmark
parameter values. Table 3 indicates that the value of the equilibrium growth rate
for the current parametrization equals 2.03%. The parameterization of the model
allows us to calculate the values of the eigenvalues determined in (33). Carrying
out these calculations, we find λ1 = 0.2658, λ2 = 0.0337, λ3 = 0.0534, and λ4 =

0.0499, so that all eigenvalues are indeed positive. Therefore, Table 3 confirms
that any transitional path is locally unstable and thus the economy must always be
on its balanced growth path, just as in Romer (1986) and Mierau and Turnovsky
(2014a). The parametrization also permits us to characterize the magnitude of
the µi (i = C,H, E,∆) and the nH terms in relation to the stationary variables,
(x̃, ỹ, ẽ, ∆̃). The stationary variables are, respectively, equal to 0.2623, 2.3377,
2.6104 and 20.0359. The implied values of µC, µH, µE and µ∆ are, respectively,
0.0161, 0.0032, 0.0036, 0.0015 and 0.0076, confirming our comment that the µi

(i = C,H, E,∆) and the nH terms are negligible when compared to the stationary
variables.

5 Population aging and growth
This section examines the growth effects of two different channels of the demo-
graphic change, namely, a decline in the birth rate and a reduction in the mortality
rate.

5.1 A decline in birth rate
Let us first examine how demographic changes caused by a decline in the birth
rate, β, affect the economic growth rate. Figures 2-1 to 2-4 show how the decline in
β from 0.035 to 0.005 affects the population growth rate (Figure 2-1), the relative
share of each cohort (Figure 2-2), the share of population aged 65 and over (Figure
2-3) and the dependency ratio (Figure 2-4), respectively.15 Under the demographic
steady state defined in (22), a decline in the birth rate leads to the lower growth rate
of the population, which results in the larger share of the older population. The
population growth rate decreases from 2.93% (β = 0.035) to -2.71% (β = 0.005),
whereas the share of the population aged 65 and over increases from 14.32%
(β = 0.035) to 57.72% (β = 0.005). Therefore, given the stable labor supply
structures (i.e., L(t − v) and R), the dependency ratio also increases from 20.24%
(β = 0.035) to 125.80% (β = 0.005), as shown in Figure 2-4.

15The National Institute of Population and Social Security Research (IPSS) estimates that the
birth rate, β, in Japan will decrease from 0.0193 in 1973 to 0.0056 in 2060. In this subsection, we
changed the value of β enough to cover this predicted decline in the birth rate.

19



Figures 2-5 and 2-6 show how this population aging caused by a decline in the
birth rate affects the social security tax rate (Figure 2-5) and the per capita output
growth rate (Figure 2-6) under several alternative values of social security benefit
rate, b. From (31) (resp. (27)), the per capita output growth rate (social security
tax rate) is directly related to the population growth rate. Thus, in Figure 2-6 (Fig-
ure 2-5), we depict the relationship between the population growth rate and the
per capita output growth rate (the social security tax rate). As show in Figure 2-5,
the social security tax rate is negatively related to the population growth rate (birth
rate) because the dependency ratio increases along with the decline in population
growth rate (birth rate). When b = 0.4, for example, the social security tax rate
increases from 8.1% (β = 0.035) to 50.32% (β = 0.005). Moreover, in Figure
2-6, when the social security benefit rate is relatively high (i.e., b ≥ 0.4), we find
that there is a hump-shaped relationship between the population growth rate (birth
rate) and the rate of per capita output growth. When b = 0.4, for example, the
per capita output growth rate increases from 1.63% to 2.06% in response to the
decline in β from 0.035 to 0.012. The further decline in β from 0.012 to 0.005,
however, lowers the per capita output growth rate from 2.06% to 1.71%. There-
fore, the maximum per capita output growth rate is achieved when β = 0.012 or
when the population growth rate is −0.64% (i.e., π = −0.0064).

This hump-shaped relationship between the population growth rate (birth rate)
and the per capita output growth rate is intuitively explained as follows. From
(29), the decline in the birth rate and the resulting decrease in the population
growth rate, π, provides the two competing influences on economic growth. On
the one hand, the positive growth effect of the decline in π is the “anti-dilution ef-
fect,” which is reflected in the second term in the first line of the RHS of (29).
From (29), the decline in population growth rate mitigates the dilution of ag-
gregate capital to the larger population, which enhances the productivity of all
employed workers. This “anti-dilution effect” enhances the capital accumulation
and thereby positively affects economic growth. On the other hand, the negative
growth effect of the decline in π is the “social security burden effect,” which is
reflected in the third term in the first line of RHS of (29). As inferred from (29)
and (31), the net impact of the social security on growth operates entirely through
its effect on the aggregate consumption-capital ratio, c(t)

k(t) . With social security,
individuals know that they will have to support retirees and will thus have fewer
resources for their own consumption over that portion of their lifespan. They also
know that if they live to retirement, they, themselves, will be beneficiaries. How-
ever, they discount these future benefits at a rate greater than the biological rate
offered by the unfunded social security system, and on balance the initial human
wealth is reduced. The overall effect is to reduce their rate of asset accumulation
more than does consumption. As a result, aggregating overall agents, this leads
to an increase in the aggregate consumption-capital ratio, c(t)

k(t) , sustaining a decline
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in the equilibrium growth rate in accordance with equation (29). This negative
growth effect of social security becomes more serious as the social security tax
rate becomes higher. Therefore, noting the results of Figure 2-5, the negative
“social security burden effect” is more likely to dominate (be dominated by) the
positive “anti-dilution effect,” when the population growth rate is sufficiently low
(high) or the birth rate is sufficiently low (high).

Finally, Figure 2-7 shows how population aging caused by a decline in the
birth rate affects the utility multiplier defined in (34). With no social security
(b = 0), as shown in Figures 2-6 and 2-7, both the utility multiplier and the per
capita output growth rate increase with the decline in the population growth rate
(birth rate). These results imply that the expected lifetime utility of all existing
and future generations will be improved by the decline in population growth rate
(birth rate). When the social security benefit rate is relatively high, however (i.e.,
b ≥ 0.4), the utility multiplier is positively related to the population growth rate,
whereas the relationship between the population growth rate and the per capita
output growth rate is hump-shaped. These results imply that when the population
growth rate (birth rate) is already sufficiently low, the further decline in the pop-
ulation growth rate (birth rate) may deteriorate the expected lifetime utility of all
existing and future generations. These welfare implications of the decline in the
birth rate are sufficiently interesting to deserve consideration. Nevertheless, these
results should be interpreted with caution. In our specifications, people do not
gain any utility from the number of children they have (e.g., Becker and Barro,
1988) or consider the existence of social planners who care about the potential
number of children and their utility (e.g., Michel and Wigniolle, 2007). Explicit
considerations of these factors might alter the welfare implications of our simula-
tions.

5.2 A decline in mortality rate
Let us next examine how demographic changes caused by a decline in the mor-
tality rate affect the economic growth rate. The demographic changes running
through mortality can either be driven by a change in old age, µ1, or youth mor-
tality, µ0, defined in (35). Because the two changes give almost the same effect,
however, we focus on the old age mortality, µ1, in our analysis. Figures 3-1 to 3-4
show how the decline in µ1 from 0.0859 to 0.0459 affects the population growth
rate (Figure 3-1), the relative share of each cohort (Figure 3-2), the share of the
population aged 65 and over (Figure 3-3) and the dependency ratio (Figure 3-4),
respectively.16 Under the demographic steady state defined in (22), a decline in

16The decline in µ1 from 0.0859 to 0.0459 increases the life expectancy at age 20 from 46.7583
years to 87.5127 years. The National Institute of Population and Social Security Research (IPSS)
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old age mortality leads to the higher growth rate of the population and a larger
share of the older population. The population growth rate increases from -1.12%
(µ1 = 0.0859) to 0.78% (µ1 = 0.0459), and the share of the population aged 65 and
over increases from 14.56% (µ1 = 0.0859) to 40.21% (µ1 = 0.0459). Therefore,
given the stable labor supply structures (i.e., L(t − v) and R), the dependency ratio
also increases from 20.89% (µ1 = 0.0859) to 69.48% (µ1 = 0.0459), as shown in
Figure 3-4.

Figures 3-5 and 3-6 show how this population aging caused by a decline in the
old age mortality rate affects the social security tax rate (Figure 3-5) and the per
capita output growth rate (Figure 3-6) under several alternative values of social
security benefit rate, b. As shown in Figure 3-5, the social security tax rate is
positively (negatively) related to the population growth rate (old age mortality
rate) because the dependency ratio increases along with the increase (decrease) in
the population growth rate (old age mortality rate). When b = 0.4, for example,
the social security tax rate increases from 8.036% (µ1 = 0.0859) to 27.79% (µ1 =

0.0459). Moreover, in Figure 3-6, we find that the per capita output growth rate is
positively (negatively) related with the population growth rate (old age mortality
rate). When b = 0.4, for example, the per capita output growth rate increases from
0.94% (µ1 = 0.0859) to 2.32% (µ1 = 0.0459).

This positive relationship between the population growth rate and the per
capita output growth rate (negative relationship between the old age mortality
and the per capita output growth rate) is intuitively explained as follows. From
(29), the decline in the old age mortality rate and the resulting increase in the
population growth rate, π, provide two negative effects and one positive effect on
economic growth. The first negative effect is the “social security burden effect,”
which is reflected in the third term in the first line of RHS of (29). The presence of
unfunded social security leads to an increase in the aggregate consumption-capital
ratio, c(t)

k(t) , which lowers the equilibrium growth rate. This negative growth effect
of social security becomes more serious as the social security tax rate becomes
higher. Therefore, noting the results of Figure 3-5, the negative “social security
burden effect” becomes more serious as the old age mortality rate declines. The
second negative effect is the “dilution effect,” which is reflected in the second term
in the first line of the RHS of (29). From (29), the decline in old age mortality
and the resulting increase in the population growth rate enhances the dilution of
aggregate capital to the larger population, which lowers the productivity of all em-
ployed workers. This “dilution effect” retards capital accumulation and thereby
negatively affects economic growth. One positive effect is the “life-span effect,”

estimates that the life expectancy for a woman of age 20 will increase from 53.39 years in 1960 to
71.10 years in 2060. In this subsection, we changed the value of µ1 enough to cover this predicted
increase in the life expectancy.
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which is also reflected in the third term in the first line of RHS of (29). A de-
cline in the old age mortality rate motivates individuals to save more for their
old age, which increases their rate of asset accumulation more than consumption
does. As a result, after aggregating overall agents, this leads to a decrease in
the aggregate consumption-capital ratio, c(t)

k(t) and thereby positively affects eco-
nomic growth. The numerical simulation result in Figure 3-6 indicates that the
positive “life span effect” dominates the two aforementioned negative effects un-
der benchmark parameter values. Therefore, the positive relationship between the
population growth rate and the per capita output growth rate (negative relationship
between the old age mortality and the per capita output growth rate) holds irre-
spective of the values of the social security benefit rate. The positive growth effect
of the decline in µ1 grows smaller as the value of b increases, however, because
the social security burden effect becomes more serious with the rise in the social
security benefit rate.

Finally, Figure 3-7 shows how population aging caused by a decline in the
old-age mortality rate affects the utility multiplier defined in (34). Despite the fact
that the per capita output growth rate and the population growth rate are positively
related (the per capita output growth rate and the old-age mortality rate are nega-
tively related), the utility index decreases along with the increase in the population
growth rate (the decline in the old age mortality rate). Therefore, the effect of the
decline in the old-age mortality rate on the expected lifetime utility of all existing
and future generations is generally ambiguous, while it is easily expected that fu-
ture generations will obtain larger utility gains from the higher per capita output
growth rate. However, these welfare implications of the decline in old-age mortal-
ity rate are heavily dependent upon our utility specifications and should therefore
be interpreted with caution. In our baseline simulation, the equilibrium value of
the individual flow utility, u(C(v, t)), is negative, which a priori implies that the
individual prefers a shorter life given the lifetime utility specification defined in
(8). Our somewhat counterintuitive result that the utility index decreases along
with the decline in the old age mortality rate is derived directly from this utility
specification.17

17In fact, to avoid this problem, the optimal longevity literature (e.g., Hall and Jones, 2007, Dal-
gard and Strulik, 2014) employs the utility specifications that guarantee positive utility, although it
complicates the analysis to some extent. The precise evaluation of the welfare effect of longevity
is not the main concern of this paper. Therefore, to avoid this complication, we do not employ this
type of utility specification.
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6 Changes in the demographic structures in Japan
In this section, we use the calibrated model to study how the demographic changes
occurring and predicted in Japan affect the economic growth rate. To perform
this exercise, we first estimate the parameters of our survival function, µ0 and µ1,
for every 5 years from 2000 to 2060, using past and future life tables for Japan
estimated by the National Institute of Population and Social Security Research
(IPSS).18 The total (solid) line in Figure 4-1 shows the evolution of the life ex-
pectancy at age 20 calculated by the estimated values of µ0 and µ1. The life ex-
pectancy at age 20 is predicted to increase from 64.4227 years in 2000 to 70.6572
years in 2060.19 Next, we trace out the birth rate, β, implied by our demographic
model using actual and estimated data for the population growth rate, π, as the
input for the demographic steady state in (22). The total (solid) line in Figure 4-2
shows this implied birth rate, which is predicted to decrease from 1.66 % in 2000
to 0.88 % in 2060. Although this implied birth rate is persistently higher than the
actual data or other estimates, all of these values follow the same trend and the
correlations among them are therefore quite high.20 Further, the total (solid) line
in Figure 4-3 shows the actual and estimated data for the population growth rate,
which is used to calculate the birth rate in Figure 4-2. The population growth rate
is predicted to decrease from 0.2% in 2000 to -1.19% in 2060.

To analyze the development of economic growth, we use the demographic
parameters underlying Figures 4-1 to 4-3 to calculate the equilibrium value of the
dependency ratio (Figure 4-4), social security tax rate (Figure 4-5) and per capita
output growth rate (Figure 4-6), respectively. To isolate the purely demographic
effects, all other exogenous parameters are kept unchanged. Noting b = 0.4 under
the benchmark parameter values, the total (solid) line in Figure 4-4 shows that the
social security tax rate increased from 18.82% in 2000 to 36.02 % in 2060 along
with the rise in the dependency ratio from 47.06% in 2000 to 90.06% in 2060, as
shown in Figure 4-5 . This rapid rise in the social security tax rate strengthens
the negative growth effect of social security. In fact, as shown in the total (solid)
line in Figure 4-6, the per capita output growth rate, which initially rises, starts to

18Based on the latest results from the Population Census, the National Institute of Population
and Social Security Research (IPSS) released the new population projections and future life tables
for Japan in January 2012. We used these projected future life tables and estimated data for the
population growth rate from 2010 to 2060 for our numerical simulation analyses. As for the past
life tables and population growth rate, we used the Japanese Mortality Database and the results of
Population Census for each year.

19The National Institute of Population and Social Security Research (IPSS) estimates that the
life expectancy of a woman of age 20 will increase from 65.08 years in 2000 to 71.10 years in
2016.

20The National Institute of Population and Social Security Research (IPSS) estimates that the
crude birth rate in Japan will decrease from 0.95% in 2000 to 0.56% in 2060.

24



decline in 2035. Intuitively, the negative “social security burden effect” dominates
the aforementioned positive growth effects, namely, the “anti-dilution effect” and
“life-extension effect” from the mid 2030s.

To understand the mechanism behind this decline in the per capita output
growth rate from 2035, we decompose the growth effects of these demographic
changes into two parts, namely, the effect of demographic changes caused purely
by a decline in the birth rate and those caused purely by a reduction in the mor-
tality rate. The µ fixed (dashed) lines in Figures 4-3 to 4-6 isolate the effect of
demographic changes caused purely by a decline in the birth rate on the popula-
tion growth rate (Figure 4-3), dependency ratio (Figure 4-4), social security tax
rate (Figure 4-5), and per capita output growth rate (Figure 4-6), respectively, by
holding the mortality rate and thus the life expectancy at age 20 constant at its
value of 2010 (i.e., 66.1425 years) as shown in the µ fixed line in Figure 4-1.
Conversely, the β fixed (dot-dash) lines in Figures 4-3 to 4-6 isolate the effect of
demographic changes caused purely by a decline in the mortality rate on these
variables by holding the birth rate constant at its value of 2010 (i.e., 1.52%), as
shown in the β fixed line in Figure 4-2. 21 22

From Figure 4-6, the β fixed (dot-dash) line increases steadily with time,
whereas the µ fixed (dashed) line initially increases but then starts to decline in
2030. These results imply that the effect of demographic changes caused purely
by a decline in the mortality rate on growth is always positive, whereas the effect
of demographic changes caused purely by a decline in the birth rate on growth is
initially positive, but then becomes negative in 2030. The total effect of demo-
graphic changes on growth, which is represented by the total (solid) line in Figure
4-6, is heavily influenced by the effect of demographic changes caused purely by
a decline in birth rate. 23 Therefore, we can confirm that the growth effect of

21More concretely, the total case, the µ fixed case and the β fixed case are computed, respectively
as follows. In the total case, it is computed by using the estimated parameter values of (µ0, µ1) and
actual and estimated data for population growth rate, π; the birth rate, β, is computed endogenously
to satisfy the demographic steady state in (22). The total (solid) line in Figure 4-2 shows this
implied birth rate. In the µ fixed case, it is computed by holding the parameter values of (µ0, µ1)
constant at their values of 2010 and using the computed values of the birth rate, β. In the total case,
the population growth rate, π, is computed endogenously to satisfy (22). The µ fixed (dashed) line
in Figure 4-3 shows this implied population growth rate. Finally, in the β fixed case, it is computed
by holding the parameter values of β constant at its 2010 value and using the estimated parameter
values of (µ0, µ1); the population growth rate, π, is computed endogenously to satisfy (22). The β
fixed (dot-dash) line in Figure 4-3 shows this implied population growth rate.

22As shown in the β fixed line (the µ fixed line) in Figure 4-3, by holding the birth rate (mortality
rate) constant, the decline in the mortality rate (birth rate) positively (negatively) affects population
growth rate. Therefore, the β fixed line lies below the total line.

23From Figures 4-4 and 4-5, both the µ fixed (dashed) line and β fixed (dot-dash) line increase
with time. These results imply that both the decline in the birth rate and the reduction in the mortal-
ity rate positively affect the dependency ratio and thereby the social security tax rate. Because the
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the predicted demographic changes in Japan is initially positive but may become
negative in the mid 2030s.

7 Policies maintaining the social security tax rate
Population aging caused by the decline in both the birth and mortality rates alters
the solvency of the unfunded social security system by increasing the dependency
ratio. The analyses in the previous sections suggest that this rise in the dependency
ratio and the resulting increase in the social security tax rate may negatively af-
fect economic growth. To address these challenges, this section considers the
two different types of policies that maintain the solvency of unfunded social se-
curity systems. The first policy is to maintain a constant social security tax rate
by reducing the pension benefit rate. We denote this type of policy as the pension
payment reduction policy. The second policy is to maintain the dependency ratio
and thus the social security tax rate constant by increasing the average claimant
age for pension benefits or the average retirement age. We denote this type of
policy as the retirement extension policy. We consider these policy experiments
based upon the calibrated model developed in Section 6 and focus our analyses on
their effect on the steady state equilibrium growth rate and lifetime utility. Figures
5-1 to 5-6 show how these policy experiments affect the evolutions of the pension
benefit rate (Figure 5-1), the average retirement age (Figure 5-2), the dependency
ratio (Figure 5-3), the social security tax rate (Figure 5-4), the per capita output
growth rate (Figure 5-5), and the utility multiplier (Figure 5-6), respectively. Fur-
ther, the no-policy (solid) lines in Figures 5-1 to 5-6 describe the case without
any policy interventions, the benefit policy (dashed) lines describe the case where
the pension payment reduction policy is introduced in 2020, and the retirement
policy (dot-dash) lines describe the case where the retirement extension policy is
introduced in 2020, respectively.

Let us first consider the pension payment reduction policy. As shown in the
benefit policy (dashed) lines in Figure 5-4, we maintain the social security tax rate
constant at its 2020 value (i.e., 25.58 % ) by reducing the pension benefit rate,
b, from 0.4 in 2020 to 0.284 in 2060 as shown in Figure 5-1. From Figures 5-5
and 5-6, the benefit policy (dashed) lines in Figures 5-5 and 5-6 always lie above
the no policy (solid) line, which indicates that the introduction of the pension
payment reduction policy positively affects both the per capita output growth rate

µ fixed (dashed) line in Figure 4-5 always lies above the β fixed (dot-dash) line, the increase in the
social security tax rate due to the decline in birth rate is larger than the change due to the decline in
mortality rate. Therefore, the total effect of demographic changes on growth, which is represented
by the total (solid) line in Figure 4-6, is heavily influenced by the effect of demographic changes
caused purely by a decline in the birth rate.
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and utility multipliers. For example, the per capita output growth rate in 2060
is increased from 2.04 % to 2.60 % by the introduction of the pension payment
reduction policy.

Next, let us consider the retirement extension policy and compare it with the
pension payment reduction policy. As shown in the retirement policy (dot-dash)
lines in 5-3 and 5-4, we maintain the dependency ratio as well as the social secu-
rity tax rate constant at their 2020 values (i.e., 63.95 % and 25.58 %) by increasing
the average claimant age for social security benefits from 65.0159 years in 2020
to 71.1491 years in 2060 as shown in Figures 5-2. From Figures 5-5 and 5-6,
the retirement policy (dot-dash) lines in Figures 5-5 and 5-6 also lie above the
no policy (solid) lines, which indicates that the retirement extension policy also
positively affects both the per capita output growth rate and utility multipliers.
For example, the per capita output growth rate in 2060 is increased from 2.04
% to 2.12% by the introduction of the retirement extension policy. Figures 5-5
and 5-6 also show, however, that the retirement policy (dot-dash) lines always lie
below the benefit policy (dashed) lines, which indicates that the growth and wel-
fare enhancing effects of the retirement extension policy are smaller than those of
the pension payment reduction policy. Therefore, of the two policies considered
here for maintaining the solvency of a PAYG social security system, the pension
payment reduction policy is better than the retirement extension policy for both
growth and welfare in response to population aging. This result may not be sur-
prising, however, because social security reduces growth and welfare in our simple
model.

8 Concluding remarks
This paper examined how population aging caused by a decline in the birth rate or
a reduction in the mortality rate affect economic growth in an overlapping gener-
ations model with a general demographic structure and a sizable unfunded social
security system. Through numerical simulations, we showed that a decline in
the birth rate has non-monotonic effects on economic growth, yielding a hump-
shaped relationship between the population growth rate and the economic growth
rate, whereas a reduction in the mortality rate has a monotonic positive effect on
economic growth, yielding a monotonic positive relationship between the pop-
ulation growth rate and the economic growth rate. We also used our model to
study how demographic changes occurring and predicted in Japan affect the eco-
nomic growth rate. We showed that the growth effect of the predicted demo-
graphic changes in Japan is initially positive but it may become negative from the
mid 2030s. This paper also examined the growth and welfare effects of a reduc-
tion in social security payments or an extension of the retirement age, and showed
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that the pension payment reduction policy is better than the retirement extension
policy for both growth and welfare in response to population aging.

Appendix A: The equilibrium for which γ = r − π is
not a consistent (viable) equilibrium
Using the household budget constraint (10) and government budget constraint
(27), we can write aggregate consumption as:

c(t) ≡
∫ t

t−D
p(t − v)C(v, t)dv,

=

∫ t

t−D
{[r + µ(t − v)]A(v, t) + [1 − τs(t)]w(t)L(t − v) + bw(t)[1 − L(t − v)] − At(v, t)}p(t − v)dv,

=

∫ t

t−D
{[r + µ(t − v)]A(v, t) + w(t)L(t − v) − At(v, t)}p(t − v)dv,

= w(t)l(t) +
∫ t

t−D
{[r + µ(t − v)]A(v, t) − At(v, t)}p(t − v)dv.

(37)

Suppose γ = r − π, then (29) implies that c(t) = w(t)l(t); this allows us to write
(37) as:

β

∫ t

t−D
{[r + µ(t − v)]A(v, t) − At(v, t)}e−π(t−v)−M(t−v)dv = 0. (38)

Integrating an individual agent’s budget constraint over his/her life time, recog-
nizing that his/her initial financial wealth is zero, and recalling the transversality
condition yields his/her intertemporal budget constraint:∫ v+D

v
{[1− τs(τ)]w(τ)L(τ− v)+ bw(τ)[1− L(τ− v)]−C(v, τ)}e−r(τ−v)−M(τ−v)dτ = 0.

(39)
Substituting the budget constraint from (10) into (39) gives:∫ v+D

v
{[r + µ(t − v)]A(v, t) − At(v, t)}e−r(τ−v)−M(τ−v)dτ = 0. (40)

Clearly, (38) and (40) can hold simultaneously only if r = π. As both r and π are
set exogenously and independently, there is no reason for this equality to hold.
Moreover, setting r = π implies γ = 0, so that the economy has a zero growth rate
and no capital accumulation. In addition, it violates the assumption of dynamic
efficiency and patience r > ρ > π made at the outset. For these reasons, this
equilibrium is ruled out.

28



Appendix B: The sufficient condition for which a unique
consistent equilibrium growth rate exists
This section establishes the sufficient conditions for which a unique consistent
equilibrium growth rate exists. We first begin by noting that (31) can be written
as:

Ψ(γ) = Γ(γ), (41)

where
Ψ(γ) ≡ γ − (r − π)

(1 − α)Z
φ((1 − σ)r + σρ)Ω(π), (42)

and

Γ(γ) ≡ φ((1−σ)r+σρ)Ω(π)−[(1−b−bd)Ω(r−γ)+bφ(r−γ)]φ(γ+π−σ(r−ρ)). (43)

For γ = r − π, we can easily confirm that the relation Ψ(r − π) = 0 holds. Further,
noting d = 1−l

l , l = βΩ(π) and 1 = βφ(π), we can establish that:

Γ(r − π) = φ((1 − σ)r + σρ)b[(1 + d)Ω(π) − φ(π)],

= φ((1 − σ)r + σρ)b[
1
β
− φ(π)],

= 0.

(44)

Hence, the equilibrium condition (41) is satisfied when γ = r − π. As shown
in Appendix A, however, γ = r − π violates the transversality condition and can
therefore be ignored.

The aim of this section is to establish the sufficient condition for which a
unique consistent equilibrium growth rate exists. From the inspections of (41)
to 43), suppose that (i) Γ(γ) is concave, and (ii) the relation Γ′(r − π) < 0 holds,
we can confirm that γ = r−π is not the unique intersection point ofΨ(γ) and Γ(γ),
but there is a second, consistent, point of intersection. Therefore, we can ensure
the existence of a unique consistent equilibrium growth rate if conditions (i) and
(ii) hold simultaneously. In the following, we first derive the parameter conditions
that ensure the relation Γ′(r − π) < 0 holds. Then, in the second step, we confirm
that Γ(γ) is concave.

The parameter conditions for Γ′(r − π) < 0

To establish the properties of Γ(γ) function, we make use of the following prop-
erties of the sub-function φ(x) and Ω(x). Specifically, the following relationships
hold.
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• φ′(x) = −
∫ D

0
se−xs−M(s)ds < 0, φ′′(x) =

∫ D

0
s2e−xs−M(s)ds > 0, φ′′(x) >

φ′(x)2

φ(x) > 0, and d
dx [φ

′(x)
φ(x) ] = φ

′′(x)φ(x)−φ′(x)2

φ(x)2 > 0.24

• Ω′(x) = −
∫ D

0
se−xs−M(s)−N(s)ds < 0, Ω′′(x) =

∫ D

0
s2e−xs−M(s)−N(s)ds > 0,

Ω′′(x) > Ω
′(x)2

Ω(x) > 0, and d
dx [Ω

′(x)
Ω(x) ] = Ω

′′(x)Ω(x)−Ω′(x)2

Ω(x)2 > 0.

To proceed further, we study the curvature of the Γ(γ) function. Its first deriva-
tive is given by:

Γ′(γ) = (1 − b − bd)[Ω′(r − γ)φ(γ + π − σ(r − ρ)) −Ω(r − γ)φ′(γ + π − σ(r − ρ))]
+ b[φ′(r − γ)φ(γ + π − σ(r − ρ)) − φ(r − γ)φ′(γ + π − σ(r − ρ))],

= (1 − b − bd)Ω(r − γ)φ(γ + π − σ(r − ρ))[Ω
′(r − γ)
Ω(r − γ) −

φ′(γ + π − σ(r − ρ))
φ(γ + π − σ(r − ρ)) ]

+ bφ(r − γ)φ(γ + π − σ(r − ρ))[φ
′(r − γ)
φ(r − γ) −

φ′(γ + π − σ(r − ρ))
φ(γ + π − σ(r − ρ)) ].

(45)

Evaluating this at γ = r − π, we obtain

Γ′(r − π) = (1 − b − bd)Ω(π)φ((1 − σ)r + σρ))[
Ω′(π)
Ω(π)

− φ
′((1 − σ)r + σρ)
φ((1 − σ)r + σρ)

]

+ bφ(π)φ((1 − σ)r + σρ)[
φ′(π)
φ(π)

− φ
′((1 − σ)r + σρ)
φ((1 − σ)r + σρ)

].

(46)

Because σ ∈ (0, r−π
r−ρ ), the relation (1 − σ)r + σρ > π holds. Therefore, noting

d
dx [φ

′(x)
φ(x) ] > 0 and φ′(x) < 0, we can confirm that the following inequalities hold:

φ′(π)
φ(π) <

φ′((1−σ)r+σρ)
φ((1−σ)r+σρ) < 0. It implies that φ

′(π)
φ(π) −

φ′((1−σ)r+σρ)
φ((1−σ)r+σρ) < 0.

Therefore, from (46), the sufficient condition for Γ′(r − π) < 0 is given by

Ω′(π)
Ω(π)

≤ φ
′((1 − σ)r + σρ)
φ((1 − σ)r + σρ)

, (47)

which is satisfied, for example, when the relation φ′(π)
φ(π) ≥

Ω′(π)
Ω(π) holds. Therefore,

some mild assumptions regarding the properties of labor supply fraction L(s) are
necessary to satisfy (47).

24φ′′(x) > φ′(x)2

φ(x) > 0 is proved as follows. We define the characteristic functions as

f (s) = se−
1
2 [xs + M(s)] and g(s) = e−

1
2 [xs + M(s)]. The Cauchy-Schwartz inequality implies

that
∫ D

0 f 2(s)ds
∫ D

0 g2(s)ds ≥ [
∫ D

0 f (s)g(s)ds]2. Substituting these two characteristic functions

into the inequality, we can confirm that the relation φ′′(x) > φ′(x)2

φ(x) > 0 holds. The property

Ω′′(x) > Ω
′(x)2

Ω(x) > 0 is also proven in an analogous way.
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Γ(γ) is concave
The second derivative of Γ(γ) is given by

Γ′′(γ) = −(1 − b − bd)[Ω′′(r − γ)φ(γ + π − σ(r − ρ)) − 2Ω′(r − γ)φ′(γ + π − σ(r − ρ))
+ Ω(r − γ)φ′′(γ + π − σ(r − ρ))]
− b[φ′′(r − γ)φ(γ + π − σ(r − ρ)) − 2φ′(r − γ)φ′(γ + π − σ(r − ρ))
+ φ(r − γ)φ′′(γ + π − σ(r − ρ))],

= − (1 − b − bd)
φ(γ + π − σ(r − ρ))Ω(r − γ) [Ω′′(r − γ)φ(γ + π − σ(r − ρ))2Ω(r − γ)

− 2Ω′(r − γ)φ′(γ + π − σ(r − ρ))φ(γ + π − σ(r − ρ))Ω(r − γ)
+ Ω(r − γ)2φ(γ + π − σ(r − ρ))φ′′(γ + π − σ(r − ρ))]

− b
φ(r − γ)φ(γ + π − σ(r − ρ)) [φ′′(r − γ)φ(γ + π − σ(r − ρ))2φ(r − γ)

− 2φ′(r − γ)φ′(γ + π − σ(r − ρ))φ(r − γ)φ(γ + π − σ(r − ρ))
+ φ(r − γ)2φ(γ + π − σ(r − ρ))φ′′(γ + π − σ(r − ρ))].

(48)

Because φ′′(x) > φ
′(x)2

φ(x) and Ω′′(x) > Ω
′(x)2

Ω(x) , we can establish

Γ′′(γ) ≤ − (1 − b − bd)
φ(γ + π − σ(r − ρ))Ω(r − γ) [Ω′(r − γ)2φ(γ + π − σ(r − ρ))2

− 2Ω′(r − γ)φ′(γ + π − σ(r − ρ))φ(γ + π − σ(r − ρ))Ω(r − γ)
+ Ω(r − γ)2φ′(γ + π − σ(r − ρ))2]

− b
φ(r − γ)φ(γ + π − σ(r − ρ)) [φ′(r − γ)2φ(γ + π − σ(r − ρ))2

− 2φ′(r − γ)φ′(γ + π − σ(r − ρ))φ(r − γ)φ(γ + π − σ(r − ρ))
+ φ(r − γ)2φ′(γ + π − σ(r − ρ))2],

= − (1 − b − bd)
φ(γ + π − σ(r − ρ))Ω(r − γ) [Ω′(r − γ)φ(γ + π − σ(r − ρ))

−Ω(r − γ)φ′(γ + π − σ(r − ρ))]2

− b
φ(r − γ)φ(γ + π − σ(r − ρ)) [φ′(r − γ)φ(γ + π − σ(r − ρ))

− φ(r − γ)φ′(γ + π − σ(r − ρ))]2,

< 0.

(49)

Thus (49) implies that Γ(γ) is concave. Therefore, suppose that the relation Ω
′(π)
Ω(π) <

φ′((1−σ)r+σρ)
φ((1−σ)r+σρ) holds, there exists an unique consistent equilibrium growth rate γ∗ that
satisfies Ψ(γ∗) = Γ(γ∗).
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To clarify the above arguments, we graph theΨ(γ) and Γ(γ) functions in Figure
6. For our benchmark parameter values, we can easily confirm that (i) Γ(γ) is
concave, and (ii) the relation Γ′(r−π) < 0 holds. Therefore, there exists an unique
consistent equilibrium growth rate γ∗ that satisfies Ψ(γ∗) = Γ(γ∗).

Appendix C: Stability
From (25) and (28), the dynamics of the macroeconomic equilibrium can be sum-
marized in the following form:

k̇(t) = Zk(t) − (δ + π)k(t) − c(t), (50)

ċ(t) = σ(r − ρ)c(t) − Φ(t), (51)

where

Φ(t) ≡
∫ t

t−D
µ(t − v)p(t − v)C(v, t)dv − βC(t, t) + πc(t). (52)

Using the second mean value theorem, we may write (52) as:25

Φ(t) = µC(t − v1)
∫ t

t−D
p(t − v)C(v, t)dv − βC(t, t) + πc(t), (53)

where

µC(t − v1) =

∫ t

t−D
µ(t − v)p(t − v)C(v, t)dv∫ t

t−D
p(t − v)C(v, t)dv

, v1 ∈ (t, t − D), (54)

is the ratio of the consumption given up by the dying to aggregate per capita
consumption. In Appendix D, we show that µC(t − v1) varies only very slightly
over time, enabling us to treat it as essentially constant. Equally important, being
a weighted average of mortality rates across cohorts, µC is small.

Recalling the definition of c(t), (13), (16) and (27), we can express (53) in a
more compact form:

Φ(t) = (µC + π)c(t) − βC(t, t),

= (µC + π)c(t) − β Ĥ(t, t)
∆(t, t)

,

= (µC + π)c(t) − βH(t, t) + E(t)
∆(t, t)

,

(55)

25For any real valued function f (x) on the interval [a, b] and function g(x) that is integrable
and does not change sign over the interval (a, b), there exists a value c ∈ (a, b) such that∫ b

a f (x)g(x)dx = f (c)
∫ b

a g(x)dx.
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where

H(t) ≡ H(t, t) ≡
∫ t+D

t
(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ, (56)

E(t) ≡
∫ t+D

t
bw(τ)e−r(τ−t)−M(τ−t)dτ, (57)

∆(t) ≡ ∆(t, t) ≡
∫ t+D

t
e−[(1−σ)r+σρ](τ−t)−M(τ−t)dτ. (58)

The dynamics of (56), (57) and (58) are given by

Ḣ(t) = −(1 − b − bd)w(t) + [r + nH(τ1 − t) + µH(τ2 − t)]H(t), (59)

Ė(t) = −bw(t) + [r + µE(τ3 − t)]E(t), (60)

∆̇(t) = −1 + [(1 − σ)r + σρ + µ∆(τ4 − t)]∆(t), (61)

where nH, µH, µE and µ∆ are defined analogously to µC:

nH(τ1 − t) =

∫ t+D

t
n(τ − t)(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ∫ t+D

t
(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ

, τ1 ∈ (t, t +D),

(62)

µH(τ2 − t) =

∫ t+D

t
µ(τ − t)(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ∫ t+D

t
(1 − b − bd)w(τ)L(τ − t)e−r(τ−t)−M(τ−t)dτ

, τ2 ∈ (t, t+D),

(63)

µE(τ3 − t) =

∫ t+D

t
µ(τ − t)bw(τ)e−r(τ−t)−M(τ−t)dτ∫ t+D

t
bw(τ)e−r(τ−t)−M(τ−t)dτ

, τ3 ∈ (t, t + D), (64)

and

µ∆(τ4 − t) =

∫ t+D

t
µ(τ − t)e−[(1−σ)r+σρ](τ−t)−M(τ−t)dτ∫ t+D

t
e−[(1−σ)r+σρ](τ−t)−M(τ−t)dτ

, τ4 ∈ (t, t + D). (65)

Using (55), (59), (60), (61), and assuming µi (i = C,H, E.∆) and nH are constant,
we can write the dynamic system in (50) and (51) as:

k̇(t) = (Z − δ − π)k(t) − c(t). (66)

ċ(t) = [σ(r − ρ) − µC − π]c(t) + β
H(t) + E(t)
∆(t)

, (67)

Ḣ(t) = −(1 − b − bd)w(t) + (r + nH + µH)H(t), (68)
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Ė(t) = −bw(t) + (r + µE)E(t), (69)

∆̇(t) = −1 + [(1 − σ)r + σρ + µ∆]∆(t). (70)

From here, we can redefine the system in terms of the stationary variables: x(t) ≡
c(t)
k(t) , y(t) ≡ H(t)

k(t) , e(t) ≡ E(t)
k(t) and ∆(t). Using (66) to (70) and w(t) = (1 − α)Z(k(t)/l),

dynamics of x(t), y(t), e(t) and ∆(t) can be written as:

ẋ(t)
x(t)
= σ(r − ρ) − µC + β

y(t) + e(t)
∆(t)x(t)

− (Z − δ) + x(t), (71)

ẏ(t)
y(t)
= −(1 − b − bd)

(1 − α)Z
y(t)l

+ r + nH + µH − (Z − δ − π) + x(t), (72)

ė(t)
e(t)
= −b

(1 − α)Z
e(t)l

+ r + µE − (Z − δ − π) + x(t), (73)

∆̇(t) = −1 + [(1 − σ)r + σρ + µ∆]∆(t). (74)

These four equations form the basis for the local dynamics of the equilibrium.
Linearizing (71) to (74) around the steady state, (x̃, ỹ, ẽ, ∆̃), the local dynamics

can be expressed as (33). To study the dynamics further, it is convenient to write
the steady-state values of (x̃, ỹ, ẽ, ∆̃) in terms of the functions φ(x) and Ω(x).
To do this, we use the balanced growth values of (30), (56), (57) and (58) in the
definitions of (x̃, ỹ, ẽ, ∆̃) resulting in

x̃ =
(1 − b − bd)Ω(r − γ) + bφ(r − γ)

φ((1 − σ)r + σρ)
φ(γ + π − σ(r − ρ))

Ω(π)
(1 − α)Z, (75)

ỹ =
(1 − b − bd)(1 − α)Z

βΩ(π)
Ω(r − γ), (76)

ẽ =
b(1 − α)Z
βΩ(π)

φ(r − γ), (77)

∆̃ = φ((1 − σ)r + σρ), (78)

where we have used the demographic steady state βφ(π) = 1 and l = βΩ(π).
(78) indicates that the relation λ4 =

1
∆
> 0 holds regardless of the values of the

underlying parameters.

Appendix D: Properties of µi (i = C,H, E,∆) and nH

We first show that the terms µi (i = C,H, E,∆) and nH are virtually constant
over time. Then, in the second step, we compute the equilibrium values of µi

(i = C,H, E,∆) and nH.
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8.1 The terms µi (i = C,H, E,∆) and nH are virtually constant
To show that the terms µi (i = C,H, E,∆) and nH are virtually constant over time,
we focus on the case of µC to avoid repetitive explanation. The other cases are
analogous. Letting t − v = s, (54) may be written as

µC(t − v1) =

∫ D

0
µ(s)p(s)C(t − s, t)ds∫ D

0
p(s)C(t − s, t)ds

. (79)

Recalling (12), we have C(t− s, t) = C(t− s, t− s)eσ(r−ρ)s. In addition, suppose that
consumption were to grow at the time-varying rate γC(u) over the period (t − s, t).
Then, C(t − s, t − s) = C(t, t)e−

∫ t
t−s γC(u)du and (79) can be written as

µC(t − v1) =

∫ D

0
µ(s)p(s)e−

∫ t
t−s γC(u)du+σ(r−ρ)sds∫ D

0
p(s)e−

∫ t
t−s γC(u)du+σ(r−ρ)sds

. (80)

To show that |dµC | is very small, we take the time derivative of (80) to obtain

dµC/dt
µC

= −
∫ D

0
µ(s)[γC(t) − γC(t − s)] f (s, t)ds∫ D

0
µ(s) f (s, t)ds

+

∫ D

0
[γC(t) − γC(t − s)] f (s, t)ds∫ D

0
f (s, t)ds

,

(81)
where f (s, t) ≡ e−

∫ t
t−s γC(u)dueσ(r−ρ)s p(s) > 0. Using the second mean value theorem,

(81) simplifies to

dµC/dt
µC

= −[γC(t) −
∫ D

0
µ(s)γC(t − s) f (s, t)ds∫ D

0
µ(s) f (s, t)ds

] + [γC(t) −
∫ D

0
γC(t − s) f (s, t)ds∫ D

0
f (s, t)ds

],

=

∫ D

0
µ(s)γC(t − s) f (s, t)ds∫ D

0
µ(s) f (s, t)ds

−
∫ D

0
γC(t − s) f (s, t)ds∫ D

0
f (s, t)ds

,

=
γC(t − s1)

∫ D

0
µ(s) f (s, t)ds∫ D

0
µ(s) f (s, t)ds

−
γC(t − s2)

∫ D

0
f (s, t)ds∫ D

0
f (s, t)ds

,

= γC(t − s1) − γC(t − s2), si ∈ (0,D), i = 1, 2,
(82)

where

γC(t − s1) ≡
∫ D

0
µ(s)γC(t − s) f (s, t)ds∫ D

0
µ(s) f (s, t)ds

,
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γC(t − s2) ≡
∫ D

0
γC(t − s) f (s, t)ds∫ D

0
f (s, t)ds

.

We can rewrite (82) as:

dµC = µC[γC(t − s1) − γC(t − s2)]dt. (83)

Written in this way, we see that of |dµC | involves the difference of the consump-
tion growth rate γC(t − s) at two points in time interacting with dt. Thus, it can
be observed to be a second-order effect and therefore negligible in the linear ap-
proximations describing the local dynamics. Analogous arguments apply to µi

(i = H, E,∆) and nH, thereby enabling us to approximate them all as constants in
assessing the potential dynamic adjustment of the aggregate economy.

8.2 Computation of the equilibrium values of µi (i = C,H, E,∆)
and nH

Using (12), (13) and the fact that along the balanced growth path C(v, v)/w(v) is
independent of v and the wage rate grows at the constant rate γ, we can write (54)
as:

µC(t − v1) =

∫ t

t−D
µ(t − v)p(t − v)e[σ(r−ρ)−γ](t−v)dv∫ t

t−D
p(t − v)e[σ(r−ρ)−γ](t−v)dv

. (84)

Recalling the demographic steady-state relationship, we can write (84) in the age
domain as:

µC =

∫ D

0
µ(s)e−[γ+π−σ(r−ρ)]s−M(s)ds∫ D

0
e−[γ+π−σ(r−ρ)]s−M(s)ds

. (85)

where s = t − v is the age of the agent. Using the φ(x) functions and the parame-
terized survival function of (35), (85) is written as:

µC =
µ1

µ0 − 1
1 − e−[γ+π−σ(r−ρ)−µ1]D

γ + π − σ(r − ρ) − µ1

1
φ(γ + π − σ(r − ρ)) , (86)

which for our specified parameters yields the value µC = 0.0161.
From (63), recalling the demographic steady-state relationship, we obtain

µH =

∫ D

0
µ(s)L(s)e−(r−γ)s−M(s)ds∫ D

0
L(s)e−(r−γ)s−M(s)ds

. (87)

Using the same arguments as above and noting the Ω(x) functions and the param-
eterized labor supply fraction function of (36), (87) is written as:

µH =
µ1

µ0 − 1
{ l0

l0 − 1
1 − e−(r−γ−µ1)R

r − γ − µ1
− 1

l0 − 1
1 − e−(r−γ−µ1−l1)R

r − γ − µ1 − l1
} 1
Ω(r − γ) , (88)
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which for our specified parameters yields the value µH = 0.0015.
Similarly, from (62), (64) and (65), we obtain

µE =
µ1

µ0 − 1
1 − e−(r−γ−µ1)D

r − γ − µ1

1
φ(r − γ) , (89)

µ∆ =
µ1

µ0 − 1
1 − e−[(1−σ)r+σρ−µ1]D

(1 − σ)r + σρ − µ1

1
φ((1 − σ)r + σρ)

, (90)

nH =

∫ D

0
n(s)L(s)e−(r−γ)s−M(s)ds∫ D

0
L(s)e−(r−γ)s−M(s)ds

, (91)

which for our specified parameters yields the value µE = 0.0032, µ∆ = 0.0036 and
nH = 0.0076, respectively.

Appendix E: Estimated survival function
We estimate the two parameters µ0 and µ1 in (35) by nonlinear least squares,
using life tables for Japan in 2010. Our estimated results in Table 4 highlight that
we obtain a tight fit with highly significant parameter estimates. The resulting
survival function illustrated in Figure 7 confirms that the survival function tracks
the actual survival data very well from 20 until 100. Beyond that, the concavity
of the function yields a less satisfactory fit.
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Table 1 G7 countries

 

country

1960-65 2010-2015 2050-2055 1960-65 2010-2015 2050-2055 1960-65 2010-2015 2050-2055 1960 2010 2050

Canada 71.27 81.78 87.35 2.48 1.09 0.98 1.90 1.04 0.32 15.1 22.5 49.3

France 70.66 81.84 87.65 1.81 1.24 1.10 1.30 0.45 0.13 20.6 29.1 51.4

Germany 69.98 80.65 86.72 1.76 0.83 0.84 0.75 0.06 -0.43 19.2 34.0 63.7

Italy 69.59 82.84 88.70 1.86 0.86 0.84 0.78 0.07 -0.36 16.4 33.7 73.9

Japan 68.97 83.30 88.68 1.72 0.83 0.80 1.02 -0.12 -0.56 10.6 38.9 77.4

United Kingdom 71.01 80.45 86.20 1.83 1.26 1.10 0.70 0.63 0.27 20.2 27.1 46.4

United States 70.06 78.87 84.58 2.22 1.26 1.17 1.37 0.75 0.37 17.4 21.6 40.9

Life expectacy at birth Crude birth rate (%) Population growth rate (%)
Old-age dependency ratio 65+/(20-

64) (%)
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Table 2. Baseline parameters and implied demographic and social security variables 

Baseline Model   

Structural parameters   

Total factor productivity Z  0.3343 

Capital share of output a  0.35 

Depreciation rate d  0.05 

Intertemporal substitution of elasticity s  0.75 

Time preference rate r  0.035 

Real interest rate r  0.067 

Social security/employment parameters   

Social security benefit rate b  0.4 

Social security tax rate (implied) s
t  0.1996 

Labor supply fraction parameters 0l  65.1049 

 1l  0.072 

Maximum working age  R  58 

Average retirement age   45.0159 

Dependency ratio (implied)  d  0.4990 

Demographic parameters   

Youth mortality 0m  145.734 

Old age mortality 1m  0.0607205 

Maximum attainable age (implied) D  82.0445 

Birth Rate b  0.016 

Life Expectancy at 20 (implied) 20L  66.1425 

Life Expectancy at 65 (implied) 65L  24.9432 

Population growth rate (implied) p  0.0016 
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Table 3. Benchmark equilibrium

Baseline Model

Economic Variables

Per capita output growth rate 0.0203 

Utility multiplier u -72.1928

Eigenvalues 1 0.2658

2 0.0337

3 0.0534

4 0.0499

)(/)()( tktctx x~ 0.2623

)(/)()( tktHty y~ 2.3377

)(/)()( tktEte e~ 2.6104

The inverse marginal propensity to consume 

out of total wealth

~
20.0359

i and Hn terms C 0.0161

H 0.0015

E 0.0032

0.0036

Hn 0.0076
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Figure 1: A unique consistent equilibrium growth rate γ∗.
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Figure 2: The effects of a decline in birth rate
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Figure 2: The effects of a decline in birth rate (cont.)
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Figure 3: The effects of a decline in mortality rate
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Figure 3: The effects of a decline in mortality rate (cont.)
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Figure 4: The effects of the predicted demographic changes in Japan
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Figure 4: The effects of the predicted demographic changes in Japan (cont.)
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Figure 5: The effects of social security reforms
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Figure 5: The effects of social security reforms (cont.)
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Figure 6: A unique consistent equilibrium growth rate γ∗.
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Table 4 

Estimated survival function in Japan 

 

Cohort in Japan (women over 20) 2010

μ0 [t-value] 145.734 [6.37]

μ1 [t-value] 0.0607 [30.17]

Adj R
2 0.996
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Figure 7: Survival Function
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