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Abstract

This paper develops revealed preference tests for choices under limited consideration, allow-

ing a partially observed data set. Our tests cover leading theories in the literature including the

limited attention model, the rationalization model, the categorize-then-choose model, and the

rational shortlisting model. It is worth noting that all our tests exploit a common structure of

limited consideration models. We start from a data set collected from a single agent, and then

extend the analysis to panel data in which the coincidence of consideration sets/preferences of

agents are tested.
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1 Introduction

Let X be a set that is interpreted as the set of alternatives, and let A � X be a set of feasible

alternatives for an agent. Following the classical choice theory, an agent will choose the most

preferable alternative according to her preference which is often assumed to be complete,

asymmetric, and transitive. In order to test if an agent’s behavior can be accounted for by this

standard framework, the theory of revealed preference is one of the most prevailing methods

for economists. Typically, we collect finitely many observations of an agent’s behavior O �

tpat, AtqutPT , where T is the set of indices of observations, At is a set of feasible alternatives

at observation t, and at is a chosen alternative from At. It is well known that a data set O

is consistent with the standard choice framework, if and only if it obeys the strong axiom of

revealed preference (SARP), which requires acyclicity of the direct revealed preference relation

¡R defined as x2 ¡R x1, if x2 � at for some t P T , x2 � x1, and x1 P At.

However, as pointed out in a number of experimental studies (e.g. Tversky, 1969; Loomes,

Starmer, and Sugden, 1991; and others), violation of SARP is not rare at all, and various

theories of bounded rationality have been proposed for systematic analyses of cyclical choices.

Amongst others, a number of studies investigate decision procedures where some feasible al-

ternatives are a priori excluded from an agent’s consideration. Namely, for a given feasible set

A, an agent maximizes her preference relation not necessarily on A itself, but on some subset

ΓpAq � A. For example, Lleras, Masatlioglu, Nakajima, and Ozbay (2010) and Masatlioglu,

Nakajima, and Ozbay (2012) consider a situation where an agent is overwhelmed by the number

of alternatives offered to her. In this case, due to the limitation of recognition capacity, she has

to maximize her preference on a subset of the feasible set. As another example, Manzini and

Mariotti (2007, 2012) and Cherepanov, Feddersen, and Sandroni (2013) establish shortlisting

decision models. There, an agent has some criteria possibly different from her preference (e.g.

psychological restrictions, a preference on categories rather than alternatives, and others), and

she makes a sequential decision: an agent firstly makes a shortlist which is “optimal” in terms

of her criteria, and then she chooses an alternative to maximize her preference relation. In

this case, ΓpAq can be interpreted as a shortlist derived in the first step.

As stated, by and large, the above listed bounded rationality models are inspired by ob-

servations of actual choice behavior. Then, it is natural to seek procedures for testing these

models from agents’ behavior. The principal objective of this paper is to develop such tests.
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More specifically, for a data set O � tpat, AtqutPT , we provide a necessary and sufficient con-

dition under which O is consistent with a model as follows: for every feasible set A � X, an

agent maximizes some complete, asymmetric, and transitive preference ¡ on her consideration

set ΓpAq � A. It is clear that, without any restriction on a set mapping Γ, such a model is

vacuous in that any choice behavior is accounted for by letting tatu � ΓpAtq for every t P T .

Thus, we deal with models where some restrictions are imposed on an agent’s consideration

mapping Γ : 2X Ñ 2X , which specifies her consideration set for every A � X. In particular, we

start from looking at the following three restrictions: (1) the attention filter property (AFP),

which requires that for every A � X, x R ΓpAq ùñ ΓpAzxq � ΓpAq, and (2) the substitutable

consideration (SUB), which requires that for every A1 � A2, ΓpA2q XA1 � ΓpA1q, and (3) the

substitutable attention filter property (SAFP), which is the joint of AFP and SUB.1 Loosely

speaking, AFP requires that the removal of unrecognized alternatives does not change the set

of recognized alternatives, while SUB requires that every alternative recognized at a larger

feasible set must be recognized at a smaller feasible set.

A number of important decision procedures are covered by the above listed restrictions on a

consideration mapping. First of all, the limited attention model in Masatlioglu, Nakajima, and

Ozbay (2012) is nothing but a preference maximization model on a consideration mapping with

AFP. In addition, we show that it is observationally equivalent to the rational menu choice

model where an agent firstly chooses a menu according to an asymmetric and transitive menu

preference on 2X , and then chooses an alternative from the chosen menu. Second of all, the

order rationalization model in Cherepanov, Feddersen, and Sandroni (2013) can be chracterized

as a preference maximization model with a consideration mapping satisfying SUB. In addition,

the categorize-then-choose model by Manzini and Mariotti (2012) also derives a consideration

mapping that obeys SUB. We show that, as long as an agent has a complete, asymmetric, and

transitive preference relation, the order rationalization model and the categorize-then-choose

model are observationally equivalent.2 If one admits that both AFP and SUB are reasonable

restrictions on a consideration mapping, then it seems natural to require both of them, or

SAFP on a consideration mapping. Indeed, as shown in Lleras, Masatlioglu, Nakajima and

Ozbay (2010), many real-world examples actually support both AFP and SUB, or SAFP (e.g.

1Lleras et al. (2010) refer to SUB as the consideration filter property, and SAFP as the strong consideration filter
property.

2In the original setting in Manzini and Mariotti (2012), an agent’s preference is assumed to be just complete and
asymmetric.

3



paying attention to n most advertised commodities). As easily deduced, if a menu preference

obeys substitutablity, then a rational menu choice model is observationally equivalent to a

substitutable limited attention model.

What is not covered by the above three types of restrictions is the rational shortlisting

model in Manzini and Mariotti (2007). There, an agent makes a shortlist as the set of maximal

elements of an asymmetric first step preference, and then she makes a choice to maximize her

preference relation. Regarding a shortlist as a consideration set, a consideration mapping

must obey SUB, but it has stronger observable restrictions. Indeed, even if a data set is

rationalizable by a limited consideration model with SAFP, it may not be supported as a

result of a rational shortlisting model, which is shown in Lleras, Masatlioglu, Nakajima, and

Ozbay (2010) in the framework of full-observation. In addition, under the transitive rational

shortlisting model where a first step preference is asymmetric and transitive, a consideration

mapping obeys SAFP, but again, such a model has stronger observable restrictions than a

limited consideration model with SAFP.3 In order to cover these models, we provide follow-up

tests that can be applied to data that are consistent with SUB/SAFP limited consideration

models.

While limited consideration models are developed in the framework of single agent decision

models, they also invoke some issues on multi-agent contexts. Due to the nature of limited

consideration models, the source of different choices between agents can be disentangled into

the following two components; one is the difference of preferences and the other is the difference

of consideration mappings. In other words, even if the choices made by agents are diverse, they

may have common preferences or consideration mappings. To distinguish the source of variety

of choices may be of importance in some contexts. In applied studies, it is often assumed that

agents in a population can be partitioned into several types, and that agents with the same

type share some common behavioral procedure. It is commonly assumed that agents in the

same type have the same preference. In addition, if a consideration mapping reflects some

psychological restrictions or social norms, then the coincidence of a consideration mapping

within a group also seems plausible. Testing these hypotheses does not require too much: our

revealed preference analyses can easily be extended to the case of panel data in the form of

O �
 �
patiqiPN , A

t
�(
tPT , where N being a set of agents.

3Similar to the case of the categorize-then-choose model, the original setting in Manzini and Mariotti (2007) does
not require the transitivity, while Au and Kawai (2011), which firstly investigates the transitive rational shortlisting
model, does require the transitivity also on a second step preference relation.
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From a technical viewpoint, all our revealed preference tests are based on a common insight

as follows. Note that, if a data set O � tpat, AtqutPT obeys SARP, or it contains no cycle with

respect to ¡R, then such a data set is trivially consistent with a limited consideration model

by letting ΓpAq � A for every A � X.4 Now, suppose that a data set is consistent with

some limited consideration model, but does have a cycle at1 ¡R at2 ¡R � � � ¡R atK ¡R at1 .

As long as an agent’s preference is complete, asymmetric, and transitive, there exists at least

one k such that atk�1 ¡ atk despite atk ¡R atk�1 . We refer to such atk as a cut-off point of

a cycle. Then, it requires that atk�1 R ΓpAtkq, and the specific property of Γ derived from

the model of interest, in turn, delivers further restrictions. For example, if we are testing the

substitutable consideration model, then SUB requires that for every s P T such that Atk � As,

ΓpAsq S atk�1 , and hence, as � atk�1 must hold. Given this argument, loosely speaking, the

consistency of a data set with a specific choice model hinges on the existence of cut-off points

that do not cause any contradiction with the model. As we will see in Section 5, this method

remains valid even for the case of panel data.

Lastly, we briefly relate our results with the existing literature. It is standard in the

literature of bounded rationality that the observable restrictions are investigated using an

exhaustive data set, or a choice function. For example, Lleras, Masatlioglu, Nakajima, and

Ozbay (2010) and Masatlioglu, Nakajima, and Ozbay (2012) characterize AFP, SUB, SAFP,

and the transitive rational shortlisting in terms of a restriction on a choice function. However,

these results are not extendable to partially observed data sets. The most closely related

papers are Tyson (2013) and de Clippel and Rozen (2014), both of which are pioneering works

of testing limited consideration models with partially observed data.5 Their approaches are

different from ours and even between themselves. Roughly speaking, their revealed preference

tests nicely work for SUB, but have some difficulties for AFP. In de Clippel and Rozen’s

approach, a necessary and sufficient condition is stated in terms of the existence of a specific

type of binary relation, where some restrictions are imposed on the relations among unobserved

alternatives as well as the ones among observed choices. They provide a procedure for finding

out such a binary relation, however, regarding the limited attention model, it works only for

a specific type of data. On the other hand, loosely speaking, our revealed preference tests

complete “within” observed actions, and are not affected by the strucutre of a data set. The

4For example, it is clear that such a consideration mapping obeys SAFP.
5It should be also noted that, to the best of the authors’ knowledge, de Clippel and Rozen (2014) is the first work

that explicitly points out the above stated non-extendability problem.
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decision model with SAFP consideration, rational shortlisting type models, and panel data are

not dealt with in Tyson (2013) and de Clippel and Rozen (2014).

The rest of this paper is organized as follows. In Section 2, we introduce limited considera-

tion models that are dealt with in this paper. Some observational equivalence between models

are also provided. The revealed preference tests for limited consideration models with AFP,

SUB, and SAFP are developed in Section 3, and tests for rational shortlisting type models are

stated in Section 4. We extend the tests to the case of panel data in Section 5.

2 Choices under limited consideration

Consider a single agent decision problem where X is a finite set of alternatives, and ¡ is a

complete, asymmetric, and transitive preference of an agent, which we refer to as a strict

preference.6 If an agent obeys the rational choice model, then for every feasible set A � X,

she maximizes her strict preference ¡ on A.

On the other hand, motivated by evidences contradicting the rational choice theory, a

number of alternative decision procedures are proposed in the literature of bounded rationality.

There, either consciously or unconsciously, an agent makes a shortlist of alternatives before

she chooses an alternative. That is, there exists a consideration mapping Γ : 2X Ñ 2X such

that ΓpAq � A for every A � X, and an agent maximizes her strict preference on ΓpAq, rather

than A itself. In what follows, given a consideration mapping Γ, ΓpAq is referred to as a

consideration set on A. Furthermore, in general, we refer to a pair of a consideration mapping

and a strict preference pΓ,¡q as a limited consideration model.

2.1 Models with AFP

In Masatlioglu, Nakajima, and Ozbay (2012), they consider a situation in which an agent

cannot recognize all feasible alternatives due to the limitation of recognition capacity. There,

following psychological literature, a consideration mapping Γ is supposed to have the attention

filter property (AFP) defined as; for every A � X and x P A,

x R ΓpAq ùñ ΓpAzxq � ΓpAq. (1)

6For every x P X, x £ x, and for every distinct x, y P X, either x ¡ y or y ¡ x holds, and for every distinct
x, y, z P X, x ¡ y and y ¡ z imply x ¡ z.
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This implies that the consideration set is not affected when unrecognized elements are removed

from a feasible set. Alternatively, (1) is rewritten as; for every A � X and B � A,

ΓpAq � AzB ùñ ΓpAzBq � ΓpAq. (2)

In what follows, we refer to pΓ,¡q as a limited attention model, if Γ obeys AFP.

In fact, this type of consideration mapping can endogenously be derived from a conscious

choice of menus from a feasible set. Consider an asymmetric and transitive binary relation

¡M defined on 2X , to which we refer as a menu preference. Let for every A � X,

ΓpAq � tx P A : DB Q x such that B1 £M B for every B1 � Au, (3)

which is saying that x P ΓpAq if it is contained in a maximal menu B � A with respect to

¡M . We refer to pΓ,¡q as a rational menu choice model, if Γ can be written in the form of (3)

for some asymmetric and transitive menu preference ¡M . The motivation of this terminology

seems clear: an agent firstly chooses some menu from feasible alternatives, and then maximizes

her strict preference ¡ on the chosen menu. It should also be noted that, in rational menu

choice models, no particular connection between ¡M and ¡ is required. Hence, for example,

this model can cover a situation in which a menu and an alternative are respectively chosen

by different agents (e.g. the mother may a priori restrict the set of toys from which the child

chooses). As a slightly more restrictive version, we refer to pΓ,¡q as a complete rational menu

choice model, if Γ can be written as (3) for some complete, asymmetric, and transitive menu

preference ¡M .

It turns out that limited attention models, rational menu choice models, and complete

rational menu choice models are all observationally equivalent in the sense that if an agent’s

behavior is accounted for by one of them, then it is also consistent with others. This result

has not been shown in the literature.

Proposition 1. Limited attention models, rational menu choice models, and complete rational

menu choice models are all observationally equivalent.
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2.2 Models with SUB

As an alternative structure of a consideration mapping, Lleras, Masatlioglu, Nakajima, and

Ozbay (2010) consider the following restriction: for every A1 � A2 and x P A1,

x R ΓpA1q ùñ x R ΓpA2q. (4)

In words, if an alternative is not recognized in a smaller feasible set, then it cannot be rec-

ognized in a larger feasible set. This seems plausible if an agent has limited capacity of

recognition. Equivalently, (4) can be written as; for every A1 � A2,

ΓpA2q XA1 � ΓpA1q. (5)

This condition is nothing but the substitutability often used in the literature of matching

theory, which is equivalent to the monotonicity of the set of unrecognized alternatives. We say

that Γ obeys substitutability (SUB) if it obeys (5), and pΓ,¡q is referred to as a substitutable

consideration model, if Γ obeys SUB.

Similar to the case of limited attention models, a substitutable consideration mapping can

be generated by conscious shortlisting. In Cherepanov, Feddersen, and Sandroni (2013), they

consider a situation in which an agent has some criteria on alternatives, other than her strict

preference. Each criterion is referred to as a rationale, which may be a psychological restriction

or may be a social norm. A set of rationales of an agent is denoted by tRkuKk�1, each of which

is assumed to be just a binary relation, so it may not be complete, asymmetric, or transitive.

An alternative x P X is said to be supported on A � X, if there exists some rationale Rk

such that xRkx1 for all x1 P Azx. Then, an agent is supposed to eliminate all unsupported

alternatives from a feasible set, that is, a consideration mapping is defined such that for every

A � X,

ΓpAq � tx P A : DRk s.t. xRkx1 for all x1 P Azxu. (6)

We refer to pΓ,¡q as an order rationalization model, if Γ is represented as (6) for some set of

rationales tRkuKk�1. It is not difficult to see that a consideration mapping in (6) obeys SUB,

and as shown in Cherepanov, Feddersen, and Sandroni (2013), the converse is also true.

Another observationally equivalent decision model is a categorize-then-choose model in
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Manzini and Mariotti (2012). In their model, an agent has a shading relation ¡M , which is

assumed to be asymmetric on 2X . In the first step, an agent makes a shortlist such that for

every A � X,

ΓpAq � tx P A : EB1, B2 � A such that B2 ¡M B1 and x P B1u. (7)

Loosely speaking, an alternative in a dominated category is eliminated from candidates of her

choice, and then, in the second step, an agent maximizes her strict preference ¡ on ΓpAq. We

say that pΓ,¡q is a categorize-then-choose model, if Γ is represented by (7) for some asymmetric

shading relation ¡M on 2X . Again, it is not difficult to see that ΓpAq obeys SUB, though it is

formally proved in Appendix. Moreover, we have the following observational equivalence.

Proposition 2. Substitutable consideration models, order rationalization models, and categorize-

then-choose models are all observationally equivalent.

In Cherepanov, Feddersen, and Sandroni (2013) and Manzini and Mariotti (2012), they

also deal with models with weaker restrictions, both of which are shown to be equivalent

to WWARP. When the completeness and transitivity is dropped from ¡ (i.e. preference is

just asymmetric), then the decision procedure is referred to as a basic rationalization model,

which is equivalent to WWARP. On the other hand, in Manzini and Mariotti (2012), they

showed that a categorize-then-choose model is equivalent to WWARP, if a preference relation

is complete and asymmetric. Since we have assumed that preference is complete, asymmetric

and transitive, strictly speaking, the observational equivalence in Proposition 2 is not explicitly

stated in the literature.

2.3 Models with SAFP

If we admit that both AFP and SUB are respectively reasonable, then it is natural to consider

the joint of AFP and SUB. Indeed, as pointed out in Lleras, Masatlioglu, Nakajima, and

Ozbay (2010), both AFP and SUB are plausible in a number of real-world examples. For

example, consider the situations in which an agent pays attention to; (a) n-most advertised

commodities, (b) all commodities of a specific brand, and if there are none available, then all

commodities of another specific brand, and (c) n-top candidates in each field in job markets.

All of these decision procedures derive consideration mappings satisfying both AFP and SUB.
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We say that Γ obeys the substitutable attention filter property (SAFP), if it obeys both AFP

and SUB, and a pair pΓ,¡q is referred to as a substitutable limited attention model, if Γ obeys

SAFP.

Given Proposition 1, it is straightforward that substitutable limited attention models are

observationally equivalent to rational menu choice models with a substitutable menu prefer-

ence. Here, similar to the case of matching theory, a menu preference ¡M on 2X is substi-

tutable, if its maximal set function obeys SUB. We refer to pΓ,¡q as a (complete) substitutable

rational menu choice model, if Γ can be written as (3) with ¡M being substitutable (and

complete).

Proposition 3. Substitutable limited attention models, substitutable rational menu choice

models, and substitutable complete rational menu choice models are all observationally equiv-

alent.

2.4 Rational shortlisting

Substitutable limited attention models can be related to Manzini and Mariotti (2007)’s two-

step decision procedure called a rational shortlisting model. There, an agent has a preference

relation for each step, say ¡1 and ¡, and for every A � X, an agent firstly makes a shortlist

ΓpAq such that

ΓpAq � tx P A : Ex1 such that x1 ¡1 xu, (8)

and then, in the second step, an agent maximizes her second step preference relation ¡ on

ΓpAq. In Manzini and Mariotti (2007), the first step preference ¡1 is just assumed to be acyclic,

while Au and Kawai (2011) deal with the case where ¡1 is asymmetric and tansitive.7 We

refer to pΓ,¡q as a (transitive) rational shortlisting model, if Γ can be represented in the form

of (8) for some acyclic (asymmetric and transitive) binary relation ¡1. Note that, similar to

other models, we require that the second step preference ¡ is a strict preference. The following

statement is known in the literature, but we record it for future references.

7In Manzini and Mariotti (2007), they assumed that both ¡1 and ¡ are just asymmetric. However, since they
also assume that the choice function is nonempty for all A � X, it is clear that ¡1 must be acyclic (otherwise ΓpAq
would be empty for some A).
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Proposition 4. If an agent obeys a (transitive) rational shortlisting model, then she obeys a

substitutable consideration (substitutable limited attention) model.

The proof of the proposition is almost obvious. If Γ is defined as (4) for some acyclic binary

relation ¡1 and A1 � A2, then x R ΓpA1q implies the existence of some y P A1 such that y ¡1 x.

Then, y P A1 � A2 implies that x R ΓpA2q. The transitive rational shortlisting part can be

confirmed in a similar vein.

3 Testing AFP, SUB, and SAFP

It is well known that the rational choice theory can be easily tested from agent’s observed choice

behavior. Let O � tpat, AtqutPT be a finite set of observed choices, where T � t1, 2, ..., T u is a

set of indices of observations, At � X be the feasible set at observation t, and at P At be the

chosen alternative at t P T . A key for testing the rational choice model is the direct revealed

preference relation ¡R defined as x2 ¡R x1, if x2 � at for some t P T , x2 � x1, and x1 P At. In

the case of the rational choice theory, the motivation of this terminology is obvious. Indeed,

if an agent follows the rational choice model and x2 ¡R x1 for some x2, x1 P X, then ¡R must

be contained in the agent’s “true” preference ¡, and hence, ¡R cannot have a cycle, that is,

at1 ¡R at2 ¡R � � � ¡R atK ùñ atK £R at1 . (9)

Actually, the acyclicity of ¡R, which is referred to as the strong axiom of revealed preference

(SARP), fully characterizes the observable restrictions from the rational choice model.

The objective of this section is to develop counterparts of SARP for testing limited con-

sideration models with AFP, SUB, and SAFP. Given a data set O � tpat, AtqutPT , we say

that a data set is rationalizable by a specific limited consideration model pΓ,¡q, if for every

t P T , at P ΓpAtq and at ¡ x for all x P ΓpAtqzat. Clearly, without any restriction on Γ, we

can trivially rationalize any observed choices by letting for every t P T , ΓpAtq � tatu. The

restrictions AFP, SUB, and SAFP respectively exclude this trivial rationalization, but they

still allow the possibility of cyclical choices, i.e. a data set O � tpat, AtqutPT may contain

cycles with respect to ¡R. Naturally, as described below, investigating the structure of cycles

plays a key role in testing limited consideration models. It is also worth noting that Theorems

1, 2, and 3 below do not depend on the finiteness of X.
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3.1 A general principle

Before proceeding to our main results, we now put forward a general idea for testing limited

consideration models. In testing a specific limited consideration model, we are actually testing

two hypotheses simultaneously: one is the structure of a consideration mapping required in

the model, and the other is that an agent has a strict preference. In other words, when we

say that a data set is consistent with some limited consideration model, we have to find a

pair pΓ,¡q that does not contradict observed choices. As already mentioned, if a data set

O � tpat, AtqutPT does not have a cycle with respect to ¡R, then, it is trivially supported as a

result of a limited consideration model with Γ being an identity mapping. Thus, with no loss

of generality, we may concentrate on a situation where O does have cycles. Formally, a profile

of chosen alternatives patkqKk�1 is a cycle with respect to ¡R, if for every k ¤ K, atk ¡R atk�1

and atK � at1 . A cycle patkqKk�1is minimal, if it contains no cycle other than itself. We assume

that a data set O has Qp¥ 0q-minimal cycles with respect to ¡R, and for q ¥ 1, the q-th

minimal cycle is represented as pat
q
kqKq

k�1. In what follows, for simplicity, we refer to a minimal

cycle as a cycle.

Suppose that a data set O � tpat, AtqutPT is collected from an agent obeying a specific

limited consideration model. Since we assume that an agent’s preference ¡ is asymmetric and

transitive, for every cycle pat
q
kqKq

k�1, there exists at least one kpqq such that a
tq
kpqq ¡R a

tq
kpqq�1 ,

but a
tq
kpqq�1 ¡ a

tq
kpqq . We refer to such an a

tq
kpqq as a cut-off point of a cycle pat

q
kqKq

k�1. Let us

denote such cut-off point by atpqq, and the alternative that succeeds it in the cycle by btpqq, i.e.

atpqq :� a
tq
kpqq and btpqq :� a

tq
kpqq�1 . An agent is supposed to maximize her preference on ΓpAq for

every A � X, and hence, btpqq ¡ atpqq implies that btpqq P Atpqq but btpqq R ΓpAtpqqq. Moreover,

if there exist q, q1 P t1, . . . , Qu such that atpqq � atpq
1q, i.e. the cut-off points correspond to

the same alternative for cycles q and q1, it also holds that btpq
1q R ΓpAtpqqq. To generalize the

argument, define for every t P T ,

Bt � tbtpqq P At : atpqq � atu, (10)

which is empty if there exists no cut-off point atpqq such that at � atpqq. This set Bt plays

crucial roles in our revealed preference tests. Since x ¡ at holds for every x P Bt, we have that
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x R ΓpAtq. Put otherwise, for every t P T ,

ΓpAtq � AtzBt. (11)

Note that the constraint on Γ in (11) does not depend on the type of model. That is, as long

as an agent obeys some limited consideration model, her consideration mapping must satisfy

it. On the other hand, since the set Bt depends on cut-off points of cycles, some restriction

must be imposed in order for Γ to satisfy a specific structure like AFP, SUB, or SAFP. Besides,

if a data set is consistent with some limited consideration model pΓ,¡q, it must also hold that

for every t P T , at P ΓpAtq, which, in view of (11), also invokes restrictions on properties of

cut-off points.

In essence, whether a data set can be rationalized by a specific model pΓ,¡q hinges on

whether an observer can choose a cut-off point atpqq from every cycle pat
q
kqKq

k�1 so that it is

consistent with (i) the properties of Γ required in that model, and (ii) preference maximizing

behavior on ΓpAtq. In the following subsections, revealed preference tests for the limited

attention, the substitutable consideration, and the substitutable limited attention are shown

in order.

3.2 Attention filter property

Suppose that O � tpat, AtqutPT is a data set collected from an agent obeying a limited attention

model pΓ,¡q, i.e. Γ obeys AFP defined in (2). With no loss of generality, we may assume

that O contains cycles with respect to ¡R, and it is clear from the discussion in the previous

subsection that each cycle has at least one cut-off point. Let
�
atpqq

�Q
q�1

be a profile of cut-

off points out of Q cycles (one cut-off point is chosen from each cycle). In addition to (11),

the limited attention model casts further restrictions on the cut-off points and the value of a

consideration mapping. Given (11), since Γ must obey AFP, it holds that, for every t P T ,

pAtzBtq � A � At ùñ ΓpAq � ΓpAtq. (12)

The above derives the following important restriction. Given a profile of cut-off points
�
atpqq

�Q
q�1

,

suppose that pAszBsq Y pAtzBtq � pAs X Atq hold. Then, by letting A � pAszBsq Y pAtzBtq,

the LHS of (12) is satisfied both for s and t. As a result, it must hold that ΓpAsq �
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ΓppAszBsq Y pAtzBtqq � ΓpAtq, which implies that as � at. In fact, this property, which

is summarized as the axiom below, characterizes a data set that is rationalizable by the lim-

ited attention model:

Axiom of Limited Attention (ALA): A data set O � tpat, AtqutPT obeys the axiom of

limited attention, if there exists a profile of cut-off points
�
atpqq

�Q
q�1

such that for every t P T ,

pAszBsq Y
�
AtzBt

�
� pAs XAtq ùñ as � at. (13)

Recall that, as seen from its definition in (10), the set Bt depends on the choice of a

profile of cut-off points. It is already clear that ALA is necessary for a data set O to be

rationalizable by a limited consideration model, but our more substantial claim in the theorem

is the converse: if a data set O obeys ALA, then an agent’s behavior can be accounted for by

the limited attention model.

Theorem 1. A data set O � tpat, AtqutPT is rationalizable by a limited attention model, if

and only if it obeys ALA.

Our proof for the sufficiency part is constructive. Given a profile of cut-off points that

obeys (13), we explicitly construct a consideration mapping that obeys AFP. Then by using it,

a strict preference that rationalizes a data set is also constructed. Specifically, given a profile

of cut-off points satisfying (13), we simply define a consideration mapping Γ such that for

every A � X,

ΓpAq �AzBt for t P T such that AtzBt � A � At. (14)

In general, for a given A � X, there may be multiple observations that satisfy the condition

in (14), i.e. for some s, t P T , AtzBt � A � At and AszBs � A � As. However, in that case,

AzBt � AzBs must hold, and hence, the above construction of Γ is well-defined, which is

proved in Appendix.

Lemma 1. Suppose that for some s, t P T , AtzBt � A � At and AszBs � A � As. Then, it

holds that AzBt � AzBs.

Based on Γ defined as (14), the proof essentially completes with the help of the following

two lemmas that are proved in Appendix.
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Lemma 2. The consideration mapping Γ defined as (14) obeys AFP.

Lemma 3. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T , x1 P ΓpAtq,

and x2 � x1. Then, ¡� is acyclic and for every t P T , at P ΓpAtq.

The rest of the proof is somewhat routine work: by Lemma 3, the transitive closure of ¡� is

an asymmetric and transitive ordering, and hence, by Szpilrajn’s theorem, it can be extended

to a strict preference ¡ on X. In addition, again by Lemma 3, it holds that for every t P T ,

at ¡ x for every x P ΓpAtqzat. Then, together with Lemma 2, the data set is rationalizable by

the limited attention model pΓ,¡q.

Lastly, gathering together with Proposition 1, Theorem 1 has the following corollary.

Corollary 1. The following statements are all equivalent.

(a) A data set O � tpat, AtqutPT obeys ALA.

(b) A data set O � tpat, AtqutPT is rationalizable by a limited attention model.

(c) A data set O � tpat, AtqutPT is rationalizable by a rational menu choice model.

(d) A data set O � tpat, AtqutPT is rationalizable by a complete rational menu choice model.

3.3 Substitutable consideration

The issue in this subsection is to develop a revealed preference test for a limited consideration

model pΓ,¡q where Γ obeys SUB. Suppose that O � tpat, AtqutPT is collected from an agent

obeying a substitutable consideration model. Again, without loss of generality, we may assume

that O contains cycles with respect to ¡R and each of them has at least one cut-off point. By

letting
�
atpqq

�Q
q�1

be a profile of cut-off points, we have (11). Bearing this in mind, consider

any s, t P T such that As � At. Then, considering SUB defined in (5), it must hold that

ΓpAtq X As � ΓpAsq. In addition, by (11), this implies that ΓpAtq X Bs � H, which in turn

implies that at R Bs. In fact, this simple observation completely characterizes whether a data

set is consistent with the substitutable consideration model.

Axiom of Substitutable Consideration (ASC): A data set O � tpat, AtqutPT obeys the

axiom of substitutable consideration, if there exists a profile of cut-off points
�
atpqq

�Q
q�1

such

that for every s, t P T ,

As � At ùñ at R Bs.8 (15)

8Once again, the set Bs in the axiom depends on the choice of a profile of cut-off points.
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Theorem 2. A data set O � tpat, AtqutPT is rationalizable by a substitutable consideration

model, if and only if it obeys ASC.

The proof of Theorem 2 is parallel to that of Theorem 1. The necessity of ASC has already

been discussed, and the proof for sufficiency is constructive. First of all, given a profile of

cut-off points
�
atpqq

�Q
q�1

, we define a consideration mapping Γ such that for every A � X,

ΓpAq � A
I ¤
t:At�A

Bt. (16)

The substantial parts of the proof are to show that Γ constructed as above obeys SUB, and

that the binary relation ¡� defined as x2 ¡� x1 if x2 � at, x1 P ΓpAtq, and x2 � x1 is acyclic,

which are proved in Appendix.

Lemma 4. The consideration mapping defined as (16) obeys SUB.

Lemma 5. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T , x1 P ΓpAtq,

and x2 � x1. Then, ¡� is acyclic and for every t P T , at P ΓpAtq.

The rest of the proof is again similar to the case of Theorem 1, just extending the transitive

closure of ¡� to a strict preference ¡ by using Szpilrajn’s theorem, which is easily proved to

rationalize a data set by the substitutable consideration model pΓ,¡q.

Given Proposition 2, Theorem 2 has the following corollary to which a similar statement

can be found in de Clippel and Rozen (2014).

Corollary 2. The following statements are all equivalent.

(a) A data set O � tpat, AtqutPT obeys ASC.

(b) A data set O � tpat, AtqutPT is rationalizable by a substitutable consideration model.

(c) A data set O � tpat, AtqutPT is rationalizable by an order rationalization model.

(d) A data set O � tpat, AtqutPT is rationalizable by a categorize-then-choose model.

3.4 Substitutable limited attention

In the rest of this section, we deal with a revealed preference characterization of substitutable

limited attention models. Clearly, if a data set O � tpat, AtqutPT is rationalizable by a sub-

stitutable limited attention model, then it is also consistent with both limited attention and
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substitutable consideration. Hence, by Theorems 1 and 2, such a data set must obey both

AFP and SUB. However, as we shall show in Example 1 below, the joint of ALA and ASC is

insufficient to characterize the observable restrictions of such models.

To clarify a necessary condition, let O � tpat, AtqutPT be a data set collected from an agent

obeying a substitutable limited attention model. That is, an agent has a strict preference ¡

on X and a consideration mapping Γ that obeys SAFP. Similar to the previous cases, we may

assume that O contains cycles with respect to ¡R, and let
�
atpqq

�Q
q�1

be a profile of cut-off

points. Corresponding to this profile of cut-off points, the set Bt is determined as in (10)

for every t P T . Since O must obey AFP, together with (11), it holds that for every t P T ,

ΓpAtq � ΓpAtzBtq. In particular, ΓpAtq � AtzBt must hold. In fact, as a slight extenstion of

this, for s, t P T it holds that

pAszBsq � At ùñ ΓpAtq � AtzBs. (17)

To see (17), we employ both AFP and SUB. First, notice that if pAszBsq � At holds, then

there exist some sets C � Bs and D � XzAs such that At � rpAszBsq Y C Y Ds.9 Since,

obviously, pAtXAsq � rpAszBsqYCs, it holds that pAszBsq � pAtXAsq � As. Then, gathering

together with ΓpAsq � ΓpAszBsq, AFP implies that ΓpAtXAsq � ΓpAszBsq. In addition, since�
ΓpAtq X pAt XAsq

�
� pΓpAtq XAsq, SUB implies that pΓpAtq XAsq � ΓpAtXAsq. Gathering

together with ΓpAtXAsq � ΓpAszBsq, this implies that pΓpAtqXAsq � AszBs. Since Bs � As,

we conclude that ΓpAtqXBs � H. As long as an agent obeys a substitutable limited attention

model, it must hold that at P ΓpAtq, and the relationship (17) impose a restriction on the

relationship between chosen elements and cut-off points (or Bt’s corresponding to them):

pAszBsq � At ùñ at R Bs. (18)

As a matter of fact, the conclusions in (17) and (18) have further room for extension, which

plays a key role in characterizing substitutable limited attention. We start from extending

(17). Looking at the argument in the preceding paragraph, one can see that the facts of

ΓpAsq � AszBs and Bs � As are cornerstones, and once they are known, (17) follows from

AFP and SUB. That is, even for general subsets A1, A2 � X, if both ΓpA1q � A1zV and

A1zV � A2 hold for some V � A1, then ΓpA2q � A2zV must hold. We state this as a lemma

9The set D may be empty.
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for future reference. The lemma can be shown through the same logic as deriving (17) by

letting As � A1, Bs � V , and At � A2

Lemma 6. Let A1, A2 � X and Γ be a consideration mapping satisfying SAFP. If both ΓpA1q �

A1zV and A1zV � A2 hold for some V � A1, then ΓpA2q � A2zV .

Now we turn to extending (18) with help of Lemma 6. We start from going one step further:

consider the situation where for some r, s, t P T , it holds that rpArzBrq Y pAszBsqs � At.

Since pArzBrq Y pAszBsq � pAr Y AsqzpBr X Bsq, we have that rpAr YAsqzpBr YBsqs �

rpAr YAsqzpBr XBsqs. In particular, both pArzBrq � rpAr YAsqzpBr XBsqs and pAszBsq �

rpAr YAsqzpBr XBsqs hold. Then, applying Lemma 6 by letting A1 � Ar, A2 � rpAr Y

AsqzpBr XBsqs, and V � Br, we have

Γ prpAr YAsqzpBr XBsqsq � rpAr YAsqzpBr XBsqs
H
Br

� pAr YAsqzBr. (19)

By applying Lemma 6 to As in an analogous way, we have

Γ prpAr YAsqzpBr XBsqsq � rpAr YAsqzpBr XBsqs
H
Bs

� pAr YAsqzBs. (20)

Then, combining (19) and (20), it follows that

Γ prpAr YAsqzpBr XBsqsq � rpAr YAsqzpBr YBsqs .

Since rpAr YAsqzpBr YBsqs � At follows from the definition, we can again apply Lemma

6 by letting A1 � pAr YAsqzpBr XBsq, A2 � At, and V � Br YBt to conclude that

rpArzBrq Y pAszBsqs � At ùñ ΓpAtq � AtzpBr YBsq. (21)

Clearly, (21) is an extension of (17), and the former derives an extenstion of (18) such that

rpArzBrq Y pAszBsqs � At ùñ at R Br YBs. (22)

Then, by inductive argument, we can, in turn, extend (21) and (22) for any subset τ � T
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such that
��

rPτ A
r
H�

rPτ B
r
�
� At. Namely, by the extension of (22), we have the following

axiom as a necessary (and actually sufficient) condition for a data set O to be rationalizable

by a substitutable limited attention model.

Axiom of Substitutable Limited Attention (ASLA): A data set O � tpat, AtqutPT

obeys the axiom of substitutable limited attention, if there exists a profile of cut-off points�
atpqq

�Q
q�1

such that, for every t P T and any set of indices τ � T ,

¤
rPτ

Ar
I¤
rPτ

Br � At ùñ at R
¤
rPτ

Br. (23)

Theorem 3. A data set O � tpat, AtqutPT is rationalizable by the substitutable limited attention

model, if and only if it obeys ASLA.

The substantial part of the proof is the sufficiency of ASLA. Similar to Theorems 1 and 2,

we construct a pair of a consideration mapping and a strict preference that rationalizes O. To

define Γ, we need the following set of indices for every A � X:

τpAq � max

#
τ � T :

¤
rPτ

Ar
I¤
rPτ

Br � A

+
. (24)

Then, by using τpAq, define Γ such that

ΓpAq � A
I ¤
rPτpAq

Br. (25)

Obviously, in order for the above definition to be well-defined, τpAq must be uniquely

determined for every A � X, which is actually the case as proved in Appendix.

Lemma 7. For every A � X, τpAq is uniquely determined.

Once we construct a consideration mapping as above, then the rest of proof follows a quite

similar path to Theorems 1 and 2. The following two lemmas are proved in Appendix, and

the proof completes by extending ¡� by using Szpilrajn’s theorem.

Lemma 8. The consideration mapping defined as (25) obeys SAFP.

Lemma 9. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at, x1 P ΓpAtq, and x2 � x1.

Then ¡� is acyclic and for every t P T , at P ΓpAtq.
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Given Propositions 3, the following statement is immediate from Theorem 3.

Corollary 3. The following statements are all equivalent.

(a) A data set O � tpat, AtqutPT obeys ASLA.

(b) A data set O � tpat, AtqutPT is rationalizable by a substitutable limited attention model.

(c) A data set O � tpat, AtqutPT is rationalizable by a substitutable rational menu choice

model.

(d) A data set O � tpat, AtqutPT is rationalizable by a substitutable complete rational menu

choice model.

Finally, we point out that the joint of ALA and SUB does not work as a necessary and

sufficient condition for a data set to be consistent with a substitutable limited attention model.

In the example below, a data set obeys both ALA and SUB, and hence it is rationalizable

respectively by a limited attention model and a substitutable consideration model. However, it

fails to obey ASLA, or equivalently, it is not rationalizable by a substitutable limited attention

model. This implies that, in general, the joint of two theoretical hypotheses is not necessarily

tested by the joint of tests for each hypothesis.

Example 1. Let X � tx1, x2, x3, x4, x5, x6, x7u, and consider a data set of five observations

as below:

t 1 2 3 4 5
At tx1, x2, x3u tx1, x2, x4, x6u tx1, x3, x5, x7u tx2, x4, x6u tx3, x5, x7u
at x1 x2 x3 x4 x5

There are four cycles with respect to the direct revealed preference ¡R: a1 ¡R a2 ¡R a1,

a1 ¡R a3 ¡R a1, a2 ¡R a4 ¡R a2, and a3 ¡R a5 ¡R a3. We claim that, by choosing

pa1, a1, a2, a3q as a profile of cut-off points, this data set obeys both ALA and ASC, but violates

ASLA. The relevant sets for this choice of cut-off points are summarized in Table 1. It is easily

confirmed that both ALA and ASC are satisfied. Indeed, the latter is trivially satisfied, since

we have A4 � A2 and A5 � A3, but B4 and B5 are both empty sets. It can also be seen that

ALA is satisfied. Note that, for every s, t, we have pAszBsq Y pAtzBtq � pAs X Atq, and (13)

is trivially satisfied. However, since tx1u � A1zB1 � A2 and x2 � a2 P B1, (18) is violated,

let alone ASLA. In addition, as shown below, the profile of cut-off points pa1, a1, a2, a3q is the
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q 1 2 3 4
tpqq 1 1 2 3
Atpqq tx1, x2, x3u tx1, x2, x3u tx1, x2, x4, x6u tx1, x3, x5, x7u
btpqq x2 x3 x4 x5

t 1 2 3 4 5
Bt tx2, x3u tx4u tx5u H H

AtzBt tx1u tx1, x2, x6u tx1, x3, x7u tx2, x4, x6u tx3, x5, x7u

Table 1: Relevant sets for cut-off points pa1, a1, a2, a3q.

only profile that obeys both ALA and ASC. For a profile of cut-off points to satisfy ASC, it

can contain neither a4 nor a5. To see this, suppose that tp3q � 4. Then we have btp3q � x2,

Btp3q � tx2u, Atp3q � A4 � A2, and a2 � x2 P Btp3q, which violates ASC. Setting tp4q � 5 leads

to a similar violation of ASC. Therefore, we must have tp3q � 2 and tp4q � 3 in the profile.

Furthermore, if a profile of cut-off points satisfies ALA, it cannot have a2 appear twice, or a3

appear twice in the profile. To see this, consider profile pa2, a1, a2, a3q. We have B2 � tx1, x4u,

and thus

tx2, x6u � A2zB2 � A4 � A2 � tx1, x2, x4, x6u,

but x2 � a2 � a4 � x4, which is a violation of ALA. The case of profile pa1, a3, a2, a3q leads to

a similar violation of ALA.10

4 Testing rational shortlisting models

By Proposition 4, if a data set O � tpat, AtqutPT is collected from an agent obeying a (tran-

sitive) rational shortlisting model pΓ,¡q, then it must obey ASC (ASLA). However, it is not

diffcult to find a data set that obeys ASC (ASLA), but inconsistent with any (transitive) ra-

tional shortlisting model. Indeed, for a data set to be rationalizable by a rational shortlisting

model, it must hold that for every r, s, t P T with Ar � As YAt,

as � at ùñ ar � as � at, (26)

10One can confirm that this example is consistent with the straightforward adaptation of LCA-WARP, a revealed
preference characterization of a substitutable limited attention model for a choice function shown in Llears et al.
(2010).
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which is independent of ASC/ASLA.11 In this section, we provide a test for the (transitive)

rational shortlisting model.

Suppose that an agent has two preferences ¡1 and ¡, where the former is merely acyclic

while the latter is a strict preference, and that a consideration mapping Γ is defined as (8).

Similar to the previous models, we may assume that a data set O collected from such an

agent contains cycles with respect to ¡R, and let
�
atpqq

�Q
q�1

be a profile of cut-off points.

Corresponding to this profile of cut-off points, the set Bt is determined as in (10) for every

t P T . Recall, by the definition of cut-off points, for every x1 P Bt we have x1 R ΓpAtq, which

means that there exists some x2 P Atzx1 such that x2 ¡1 x1. On the other hand, x1 P Bt means

that x1 is a chosen alternative in some observed feasible set, say As. Then, it must follow that

x1 £R x2; otherwise, since we have x2 ¡1 x1, the definition of Γ will require x1 R ΓpAsq, which

contradicts that x1 is the chosen alternative at As.

Given the discussion above, we can define a binary relation � on X such that: x2 � x1 if

x1 P Bt for some t P T , x2 P Atzx1, and x1 £R x2. Note that for every x1 P Bt, there exists

at least one x2 P Atzx1 with x2 � x1 for which x2 ¡1 x1 actually holds. Loosely speaking, �

can be seen as a broad guess of the first step preference ¡1. In addition, the acyclicity of ¡1

requires that we can always find a selection �1 � � that is acyclic, and for every t P T and

x1 P Bt, there exists some x2 P Atzx1 with x2�1 x1. Furthermore, if the first step preference ¡1

is assumed to be transitive, a selection �1 has to be chosen so that

for every x1 P Bt and z1, ..., zk, x2 �1 z1 �1 � � � �1 zk �1 x1 ùñ x1 £R x2. (27)

Loosely speaking, �1 is a “correct” guess of the first step preference, and if transitivity is

imposed, the above implies that x2 ¡1 x1. Hence, if x1 ¡R x2 were to hold, then it leads a

contradiction that x1 is deleted from a consideration set from which is actually chosen. In

fact, this observation, which is summarized in the axioms below, characterize a data set that

is rationalizable by the (transitive) rational shortlisting model.

Axiom of Rational Shortlisting (ARS): A data set O � tpat, AtqutPT obeys the axiom

of rational shortlisting, if there exists a profile of cut-off points
�
atpqq

�Q
q�1

such that there exists

11If an agent obeys the rational shortlisting model, ΓpArq � ΓpArq Y ΓpAtq is obvious. In addition, x � at � as

implies that no element in At Y Ar � Ar can dominate x with respect to the first step preference, and x dominates
any other elements in ΓpArq � ΓpArq.
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an acyclic selection �1 of �, where for every t P T ,

for every x1 P Bt, there exists x2 P At with x2 �1 x1. (28)

Axiom of Transitive Rational Shortlisting (ATRS): A data set O � tpat, AtqutPT

obeys the axiom of transitive rational shortlisting, if there exists a profile of cut-off points�
atpqq

�Q
q�1

such that there exists an acyclic selection �1 of � that obeys (27) and (28).

Theorem 4. A data set O � tpat, AtqutPT is rationalizable by a rational shortlisting model, if

and only if it obeys ARS.

Theorem 5. A data set O � tpat, AtqutPT is rationalizable by a transitive rational shortlisting

model, if and only if it obeys ATRS.

Remark 1. By Proposition 4, it suffices to apply the above tests only to profiles of cut-off

points that satisfy the requirement of ASC or ASLA, i.e. the condition (15) or (23).

The proofs of the above theorems are almost identical and the necessity parts of them have

been already discussed. Hence, we only prove the sufficient parts of them. Given a profile of

cut-off points that obeys (28), define Γ as

ΓpAq � tx P A : Ex1 P A such that x1 �1 xu. (29)

Note that the selection �1 is acyclic, so we use it as a first step preference for the case of

Theorem 4. If we can find �1 so that it obeys (27) in addition to (28), then we use the

transitive closure of it, say, �2 as a first step preference and define Γ by using it instead of

�1. Note further that ΓpAtq � AtzBt, by the definition of �1 and the construction of Γ. The

remaining substantial parts of the proof are to show that at P ΓpAtq for every t P T , and the

binary relation ¡� defined as x2 ¡� x1 if x2 � at, x1 P ΓpAtq, and x2 � x1 is acyclic, which are

proved in Appendix. Note that the following lemma is true even if Γ is defined by �2 when

ATRS is satisfied.

Lemma 10. Let ¡� be a binary relation such that x2 ¡� x1, if x2 � at for some t P T ,

x1 P ΓpAtq, and x2 � x1. Then ¡� is acyclic, and for every t P T , at P ΓpAtq.

The rest of the proof is to extend the transitive closure of ¡� to a strict preference by
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using Szpilrajn’s theorem. Then it can easily be seen that the data set is rationalized by a

(transitive) rational shortlisting model pΓ,¡q.

It is shown by Manzini and Mariotti (2007) that a rational shortlisting model can be

characterized by a combination of two axioms on a data set, namely, WWARP and Expansion.

The former is implied when the consideration mapping obeys SUB. The latter requires that

for every A1, A2 � X, if x � fpA1q � fpA2q, then x � fpA1YA2q, where f is a choice function.

Given this, one may be tempted to consider that a rational shortlisting model is tested by

the joint of ASC and (26), a straightforward partial-observation version of Expansion. The

following example shows that this is not the case, i.e. we present a data set that obeys ASC

and (26), but violates ARS. A similar example can be found for the joint of ASLA and (26).

Example 2. Let X � tx1, x2, x3, x4, x5, x6u and consider a data set of six observations as

below:

t 1 2 3 4 5 6
At tx1, x2u tx1, x2, x5u tx3, x4u tx1, x3, x4u tx5, x6u tx3, x5, x6u
at x1 x2 x3 x4 x5 x6

It can be seen that Expansion is trivially satisfied, because the chosen alternatives are all

different. Note that there are four cycles with respect to ¡R: a1 ¡R a2 ¡R a1, a3 ¡R a4 ¡R a3,

a5 ¡R a6 ¡R a5, and a1 ¡R a2 ¡R a5 ¡R a6 ¡R a3 ¡R a4 ¡R a1. We first show that ARS

cannot be satisfied. Consider the cycle a1 ¡R a2 ¡R a1. If we choose a1 to be the cut-off

point, we will have a2 � x2 P B1. However, then, there does not exist any x P A1 such that

x2 £
R x, and we cannot define � for x2. Therefore, we need to choose a2 as the cut-off point

for this cycle. By the same logic, we must choose a4 and a6 to be the cut-off points of the

second and third cycles respectively. Then we must have x5 � x1, x1 � x3, and x3 � x5, and it

will be impossible to find an acyclic selection of �. This shows that ARS is violated.

Next we show that ASC is satisfied by considering the profile of cut-off points pa2, a4, a6, a4q.

Note that the only set inclusions of feasible sets that we have are At � At�1 for t � 1, 3, 5. On

the other hand, since Bt � H for t � 1, 3, 5, ASC is trivially satisfied.
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5 Extension to panel data

In applied studies, it is often assumed that agents in a population can be partitioned into

several types, and that agents with the same type share some common behavioral procedure.

In particular, in the case of limited consideration model, one may consider the following two

natural hypotheses of common behavioral procedures: one is assuming that agents with the

same type have the same consideration mapping, and the other is assuming that agents with

the same type have the same preference relation. To test such hypotheses, an observer may

use a panel data set in the form of O �
 
ppatiqiPN , A

tq
(
tPT , with N being the set of agents who

are thought to have a common consideration mapping/preference. Naturally, in both cases,

restrictions from the model depend on the properties of a consideration mapping required

in the model as shown in the subsequent subsections. In Sections 5.1 and 5.2, we extend

the results of Section 3 to a panel data set, and consider the cases of common consideration

mapping and preference respectively. In Section 5.3, we consider a panel data set version of

Section 4.

5.1 Testing a common consideration

Suppose that a panel data set O �
 
ppatiqiPN , A

tq
(
tPT is collected from agents all of whom obey

a common limited consideration model. We say that a data set is rationalized by a specific

common limited consideration model pΓ, p¡iqiPN q if for every t P T and every i P N , ati P ΓpAtq

and ati ¡i x for all x P ΓpAtq, where the consideration mapping Γ is common across agents.

Considering the discussion in Section 3, for each agent i P N , the individual data set Oi may

have Qip¥ 0q cycles with respect to the direct revealed preference ¡Ri , and each cycle will

have a cut-off point, where we denote the profile of such cut-off points by
�
a
tpqiq
i

�Qi

qi�1
. Define

sets Bt
i � tbtpqiqi P At : a

tpqiq
i � atiu in a parallel manner to Section 3. Then it follows that

ΓpAtq � AtzBt
i , for all i P N and all t P T . Therefore, we can define the following set

Bt �
¤
iPN

Bt
i , (30)

which is empty if there exists no agent i with cut-off point a
tpqiq
i � ati. As in Section 3, this

set Bt plays crucial roles in revealed preference tests. Since for every x P Bt, there exists an
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agent i where x ¡i a
t
i, so we have x R ΓpAtq. Put otherwise, for every t P T ,

ΓpAtq � AtzBt. (31)

Parallel to Section 3, the above constraint does not depend on the type of the model. On the

other hand, since the set Bt depends on cut-off points of cycles of each agent, some restriction

must be imposed in order for Γ to satisfy a specific structure like AFP, SUB, or SAFP. Since

the form of the general principle (31) is identical to (11), the axioms that characterize each of

the models can be derived in an identical manner. The only difference is that the choices can

differ across agents.

ALA-C: A data set O � tppatiqiPN , A
tqutPT obeys ALA-C, if for every i P N , there exists a

profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
such that for every s, t P T ,

pAszBsq Y pAtzBtq � pAs XAtq ùñ asi � ati for all i P N, (32)

ASC-C: A data set O � tppatiqiPN , A
tqutPT obeys ASC-C, if for every i P N , there exists a

profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
such that for every s, t P T ,

As � At ùñ ati R B
s for all i P N. (33)

ASLA-C: A data set O �
 
ppatiqiPN , A

tq
(
tPT obeys ASLA-C, if for every i P N , there exists a

profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
such that, for every t P T and every set of indices τ � T ,

¤
rPτ

Ar
I¤
rPτ

Br � At ùñ ati R
¤
rPτ

Br for all i P N. (34)

Proposition 5. A data set O �
 
ppatiqiPN , A

tq
(
tPT is rationalizable by a common limited

attention model, if and only if it obeys ALA-C.

Proposition 6. A data set O � tppatiqiPN , A
tqutPT is rationalizable by a common substitutable

consideration model, if and only if it obeys ASC-C.

Proposition 7. A data set O �
 
ppatiqiPN , A

tq
(
tPT is rationalizable by a common substitutable

limited attention model, if and only if it obeys ASLA-C.
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The proofs of the propositions are almost identical to Theorems 1, 2, and 3 respectively.

The construction of Γ is the same as (14), (16), and (25), and the lemmas that show AFP,

SUB, and SAFP can be directly applied. The only difference is that we have to construct a

strict preference for every agent. Defining, for each agent i P N , a binary relation ¡�
i such

that x2 ¡�
i x

1, if x2 � ati for some t P T , x1 P ΓpAtq, and x2 � x1, Lemmas 3, 5, and 9 can be

applied by replacing ¡� with ¡�
i .

5.2 Testing a common preference

Considering a panel data set O �
 
ppatiqiPN , A

tq
(
tPT , we say that it is rationalized by a specific

limited consideration model with common preference ppΓiqiPN ,¡q, if for every t P T and every

i P N , ati P ΓipAtq, and ati ¡ x for all x P ΓipAtq, where the consideration mappings may differ

across agents, but all agents have the same preference.

Let ¡R be the union of the individual direct revealed preferences ¡Ri , i.e. ¡R�
�
iPN ¡

R
i .

Note that, then, x2 ¡R x1, if there exists some i P N and t P T such that ati � x2 and x1 P At.

If ¡R does not generate any cycle, then a data set can be rationalized by the standard rational

model with a common preference relation. Suppose that there are Qp¥ 0q cycles with respect

to ¡R, where the q-th cycle is denoted as pat
q
kqKq

k�1. Then there exists some profile of cut-off

points
�
atpqq

�Q
q�1

. Since all agents have the same preference, this profile does not include the

agent index. However, the agents are allowed to have different consideration mappings, so

we must consider the agent index when we consider agents’ consideration mappings. Suppose

that there exists some agent i P N such that ati � atpqq for some cycle q and t P T . Then

since we have btpqq ¡ atpqq � ati, it must follow that btpqq R ΓipAtq. Hence we define sets

Bt
i � tbtpqq P At : atpqq � atiu, for all i P N and t P T . Then x P Bt

i implies x ¡ ati, and thus

x R ΓipAtq. Put otherwise, for every t P T and every i P N ,

ΓipAtq � AtzBt
i . (35)

The discussion up to this point is a general result that is common among all the limited

consideration models with common preference. In fact, the relations (11) and (35) are identical

except for the agent index i. Thus, fixing agent i P N , the discussion in this subsection will

be completely parallel to Section 3, and we have the following axioms.
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ALA-P: A data set O � tppatiqiPN , A
tqutPT obeys ALA-P, if there exists a profile of cut-off

points
�
atpqq

�Q
q�1

such that, for all agents i P N , and for all s, t P T ,

pAszBs
i q Y pAtzBt

iq � pAs XAtq ùñ asi � ati, (36)

ASC-P: A data set O � tppatiqiPN , A
tqutPT obeys ASC-P, if there exists a profile of cut-off

points
�
atpqq

�Q
q�1

such that, for every agent i P N and every s, t P T ,

As � At ùñ ati R B
s
i . (37)

ASLA-P: A data set O � tppatiqiPN , A
tqutPT obeys ASLA-P, if there exists a profile of cut-off

points
�
atpqq

�Q
q�1

such that, for all agents i P N , every t P T , and every set of indices τ � T ,

¤
rPτ

Ar
I¤
rPτ

Br
i � At ùñ ati R

¤
rPτ

Br
i . (38)

Proposition 8. A data set O � tppatiqiPN , A
tqutPT is rationalizable by the limited attention

model with common preference, if and only if it obeys ALA-P.

Proposition 9. A data set O � tppatiqiPN , A
tqutPT is rationalizable by the substitutable con-

sideration model with common preference, if and only if it obeys ASC-P.

Proposition 10. A data set O � tppatiqiPN , A
tqutPT is rationalizable by the substitutable lim-

ited attention model with common preference, if and only if it obeys ASLA-P.

The proofs of the propositions are almost identical to Theorems 1, 2, and 3 respectively.

However, since agents have different consideration mappings, there are slight differences. In

constructing the consideration mappings, we must replace Γ with Γi, B
t with Bt

i , and τpAq

with τipAq, in (14), (16), and (25). Fixing agent i P N , the lemmas that show AFP, SUB, and

SAFP can be directly applied.

Care is needed in proving the acyclicity of binary relation ¡� defined such that x2 ¡� x1,

if x2 � ati for some i P N and t P T , x1 P ΓipAtq, and x2 � x1. Suppose that there exists a

cycle at1 ¡� at2 ¡� � � � ¡� atL ¡� at1 , and that the cut-off point is at` . Then, since all agents

have different consideration, we must focus on every agent i P N with at`i � at` , and show

that at`�1 R ΓipAt`q. However, the last part can be shown by fixing such i P N , and apply the

discussions in Lemmas 3, 5, and 9 respectively.
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5.3 Rational shortlisting and panel data

The panel data discussion for (transitive) rational shortlisting models is simply a combination

of the discussions in the preceding subsections and Section 4. As in the previous models,

we consider the following two natural hypotheses of common behavioral procedures: (1) the

agents have a common first step preference, and (2) the agents have a common second step

preference.

We start from common first step preference models pΓ, p¡iqiPN q. Note that under this

assumption, all agents have a common consideration mapping Γ. As in Section 5.1, for each

agent i P N , the individual data set Oi may have Qip¥ 0q cycles with respect to the direct

revealed preference ¡Ri , and we will have a profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
. Defining sets

Bt
i � tbtpqiqi P At : a

tpqiq
i � atiu and Bt �

�
iPN B

t
i , we have a general principle ΓpAtq � AtzBt,

which is identical to (31). Note that for every x1 P Bt, there exists some x2 P At such that

x2 ¡1 x1 and x1 £Ri x2 for all i P N . Thus we can define a binary relation � on X such that

x2 � x1, if x1 P Bt for some t P T , x2 P At, and x1 £Ri x2 for all i P N . Then, similar to the

case of Section 4, we have the following axioms.

ARS-F: A data set O � tppatiqiPN , A
tqutPT obeys ARS-F, if for every i P N there exists a

profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
, such that there exists an acyclic selection �1 of � that

obeys (28).

ATRS-F: A data set O � tppatiqiPN , A
tqutPT obeys ATRS-F, if for every i P N there exists

a profile of cut-off points
�
a
tpqiq
i

�Qi

qi�1
, such that there exists an acyclic selection �1 of � that

obeys (27) and (28).

Proposition 11. A data set O � tppatiqiPN , A
tqutPT is rationalizable by a common first step

preference model, if and only if it obeys ARS-F.

Proposition 12. A data set O � tppatiqiPN , A
tqutPT is rationalizable by a common transitive

first step preference model, if and only if it obeys ATRS-F.

The proofs of the propositions are almost identical to Theorems 4 and 5 respectively. The

construction of Γ is the same as (29). The only difference is that we have to construct a strict

second step preference for every agent. This can be done by replacing ¡� with ¡�
i , where for

every i P N , x2 ¡�
i x

1, if x2 � ati for some t P T , x1 P ΓpAtq, and x2 � x1.
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Now, we turn to the case of common second step preference models ppΓiqiPN ,¡q. Let ¡R

be the union of the individual direct revealed preference relations ¡Ri , and suppose that there

are Qp¥ 0q cycles with respect to ¡R. Then there exists a profile of cut-off points
�
atpqq

�Q
q�1

.

Defining the sets Bt
i � tbtpqq P At : atpqq � atiu, we have a general principle ΓipAtq � AtzBt

i ,

which is identical to (35). Note that for every agent i P N , x1 P Bt
i implies that there exists

some x2 P At such that x2 ¡1
i x

1 and x1 £Ri x
2. Thus, for every i P N , we can define a binary

relation �i on X such that x2 �i x1, if x1 P Bt
i for some t P T , x2 P At, and x1 £Ri x2. Then,

similar to Section 4, we have the following axioms.

ARS-S: A data set O � tppatiqiPN , A
tqutPT obeys ARS-S, if there exists a profile of cut-off

points
�
atpqq

�Q
q�1

such that for every i P N , there exists an acyclic selection �1
i of �i that obeys

(28).

ATRS-S: A data set O � tppatiqiPN , A
tqutPT obeys ATRS-S, if there exists a profile of cut-off

points
�
atpqq

�Q
q�1

such that for every i P N , there exists an acyclic selection �1
i of �i that obeys

(27) and (28).

Proposition 13. A data set O � tppatiqiPN , A
tqutPT is rationalizable by a rational shortlisting

model with common second step preference, if and only if it obeys ARS-S.

Proposition 14. A data set O � tppatiqiPN , A
tqutPT is rationalizable by a transitive rational

shortlisting model with common second step preference, if and only if it obeys ATRS-S.

Again, the proofs of the propositions are almost identical to Theorems 4 and 5 respectively.

However, since agents have different consideration mappings, we must replace Γ with Γi and

�1 with �1
i in (29).

Similar to the case of results in Section 5.2, care is needed in proving the acyclicity of

binary relation ¡� defined such that x2 ¡� x1, if x2 � ati for some i P N and t P T , x1 P ΓipAtq,

and x2 � x1. Suppose that there exists a cycle at1 ¡� at2 ¡� � � � ¡� atL ¡� at1 , and that the

cut-off point is at` . Then, since all agents have different consideration, we must focus on every

agent i P N with at`i � at` , and show that at`�1 R ΓipAt`q. However, the last part can be shown

by fixing such i P N , and apply the discussion in Lemma 10.
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Appendix

Proof of Proposition 1

We first show that a rational menu choice model derives a limited attention model. Assume that

there exists some asymmetric and transitive menu preference ¡M , and that the consideration

mapping Γ is defined as in (3). It suffices to show that Γ obeys AFP. Consider A P 2X and

x P A such that x R ΓpAq. By definition of Γ, this means that,

for every set B � A with x P B, there exists some B1 � A such that B1 ¡M B. (39)

Now we show that ΓpAq � ΓpAzxq. First, take any y P ΓpAq. This means that there

exists some B� � A such that y P B� and B1 £M B� for all B1 � A. Note that, by (39),

such B� cannot contain x. Otherwise, we will end up with x P ΓpAq, which contradicts our

initial assumption. Therefore, it follows that B� � Azx, and B1 £M B� for all B1 � Azx.

By definition of ΓpAzxq, we conclude that y P ΓpAzxq, and we have ΓpAq � ΓpAzxq. Next,

take any y P ΓpAzxq. This means that there exists some B� � Azx such that y P B� and

B1 £M B� for all B1 � Azx. Assume by way of contradiction that y R ΓpAq. Then there

exists some B�� � A such that B�� ¡M B�. Since B1 £M B� for all B1 � Azx, it follows that

such B�� must contain x. On the other hand, since x R ΓpAq, there exists some B̄ � A such

that B̄ ¡M B�� and x R B̄, i.e. B̄ � Azx. Otherwise, since ¡M is asymmetric and transitive,

there will be a menu B̄ with x P B̄ that is maximal with respect to ¡M , which contradicts

x R ΓpAq. Then, since ¡M is asymmetric and transitive, we have B̄ ¡M B�, which contradicts

y P ΓpAzxq. Summarizing, y P ΓpAq, and thus ΓpAzxq � ΓpAq. Since we have ΓpAq � ΓpAzxq,

we conclude that Γ obeys AFP.

Then, we show that a limited attention model can be converted into a complete rational

menu choice model. Let a consideration mapping Γ obey AFP. It suffices to show that, given

any A P 2X , ΓpAq is defined as the optimal subset of A, with respect to some complete menu

preference ¡M . Note that this is equivalent to saying that the consideration mapping Γ obeys

the weak axiom of revealed preference (WARP) on 2X , that is, for A1, A2 P 2X with A1 � A2,

�
A1, A2 � A and A1 � ΓpAq

�
ùñ

�
A2 � ΓpBq whenever A1, A2 � B

�
. (40)
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We prove that AFP of Γ implies WARP, by showing the contrapositive. Assume that

Γ violates WARP, i.e. there exist A1, A2 � A X B such that A1 � A2, A1 � ΓpAq, and

A2 � ΓpBq. Note that we have ΓpAq � pA X Bq � A and ΓpBq � pA X Bq � B. Then,

since ΓpAq � A1 � A2 � ΓpBq, Γ cannot obey AFP. Summarizing, we conclude that the

consideration mapping Γ in a limited attention model must obey WARP on 2X , which means

that there exists a complete, asymmetric, and transitive menu preference ¡M such that ΓpAq

is the optimal subset of A with respect to ¡M . Hence, by using this ¡M as a menu preference,

we can construct a complete rational menu choice model which has the same consideration

mapping with the original limited attention model.

Finally, it is trivial to see that a complete rational menu choice model implies a rational

menu choice model, since the former is a special case of the latter.

Proof of Proposition 2

We first note that the equivalence of substitutable consideration models and order rationaliza-

tion models has been shown by Cherepanov, Feddersen, and Sandroni (2013). Here we show

that order rationalization models and categorize-then-choose models with a strict preference

are observationally equivalent.

First we show that a categorize-then-choose model is a substitutable consideration model.

Considering a categorize-then-choose model, an agent has a strict preference ¡ on X, and an

asymmetric shading relation ¡M on 2X . The consideration set for each A � X is defined as

in (7). It suffices to show that the corresponding consideration mapping Γ obeys SUB. To

see this, consider A1, A2 � X such that A1 � A2, and x P A1 with x R ΓpA1q, which means

that there exist some B1, B2 � A1 with B2 ¡M B1 and x P B1. Since we have A1 � A2, it

clearly follows that B1, B2 � A2. By definition of the consideration mapping, we must have

x R ΓpA2q.

Second, we show that a substitutable consideration model can be converted into a categorize-

then-choose model. The proof will be constructive, i.e. we construct an asymmetric shading

relation ¡M , so that ΓpAq is represented as in (7) for all A � X. Consider a substitutable

consideration model pΓ,¡q, and set ¡M on 2X as follows: A2 ¡M A1, if A2 � ΓpAq and

A1 � AzΓpAq for some A � X. By definition, ¡M is asymmetric. In what follows, we show

that for every A � X, ΓpAq is represented as in (7) by using ¡M as the shading relation.
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Letting the set maxpA,¡M q be such that

maxpA,¡M q � tx P A : EB1, B2 � A such that B2 ¡M B1 and x P B1u,

it suffices to show that maxpA,¡M q � ΓpAq for every A � X. We first show maxpA,¡M q

� ΓpAq, by showing that x R ΓpAq implies x R maxpA,¡M q. Note that by definition of

the shading relation ¡M , we have ΓpAq ¡M AzΓpAq. Since x R ΓpAq, it follows that x R

maxpA,¡M q. To show the opposite direction, take any x P ΓpAq. Then, by letting f be

the choice function corresponding to the substitutable consideration model (i.e. fpAq is the

most preferable element in ΓpAq), we have either x � fpAq or fpAq ¡ x. In the former case,

to show that x P maxpA,¡M q, suppose to the contrary. Then there exist some B1, B2 � A

such that B2 ¡M B1 and x P B1. Defining B � B1 Y B2, it follows from the construction of

¡M that B2 � ΓpBq and B1 � BzΓpBq. Note that we have B � A, and SUB of Γ requires

ΓpAq X B � ΓpBq. Then since x � fpAq P pΓpAq X Bq, it must follow that x P ΓpBq � B2,

which contradicts x P B1. Then, consider the case where x P ΓpAq and fpAq ¡ x, and suppose

by way of contradiction that x R maxpA,¡M q. This means that there exist some B1, B2 � A

such that B2 ¡M B1 and x P B1. Defining, again, B � B1 YB2, it follows from the definition

of ¡M that B2 � ΓpBq and B1 � BzΓpBq. However, this is a contradiction, since x P ΓpAq

and SUB of Γ requires x P ΓpBq � B2.

Proof of Lemma 1

Suppose that for some s, t P T both AtzBt � A � At and AszBs � A � As simultaneously

hold. Then, it follows that pAtzBtq Y pAszBsq � pAt X Asq. By ALA, we must have at � as,

and then BtXA � BsXA follows from the assumption that A � pAtXAsq and the definition

of these sets. Thus we conclude that AzBt � AzBs.

Proof of Lemma 2

We show that Γ as defined in (14) obeys AFP. Consider A P 2X and x P A such that x R

ΓpAq. This implies that there exists some t such that AtzBt � A � At and x P Bt. Note

that, by definition, ΓpAq � AzBt. Now consider the set Azx. Since x P Bt, it follows that

AtzBt � Azx � At, and thus ΓpAzxq � pAzxqzBt. Recalling that x P Bt, it follows that
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ΓpAzxq � pAzxqzBt � AzBt � ΓpAq.

Proof of Lemma 3

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: at1 ¡� at2 ¡� � � � ¡� atL ¡� at1 . Note that x2 ¡� x1 implies x2 ¡R x1,

which follows by the way these binary relations are defined. Therefore, the cycle above implies

at1 ¡R at2 ¡R � � � ¡R atL ¡R at1 . Then, there must exist some cut-off point at` . Let us denote

t` � tpqq and at`�1 � btpqq for some q P t1, . . . , Qu. Note that at`�1 � btpqq P Bt` , and it follows

by (14) that at`�1 R ΓpAt`q. Hence it is impossible to have at` ¡� at`�1 , and we conclude that

a cycle as above cannot exist.

The fact that at P ΓpAtq for every t P T follows directly from AFP. To see this, suppose

not. Then there exists some s P T such that AszBs � At � As and at P Bs. However, this

is impossible, since AFP requires at � as, which contradicts at P Bs. Summarizing, we have

shown that ¡� is acyclic and at maximizes ¡� within the set ΓpAtq for every t P T .

Proof of Lemma 4

We show that Γ obeys SUB. Consider A1, A2 P 2X such that A1 � A2, and x P A1 with

x R ΓpA1q. Then it suffices to show x R ΓpA2q. Note that x R ΓpA1q implies that there exist

some t such that At � A1 and x P Bt. Since A1 � A2, we clearly have At � A2, and it follows

that x R ΓpA2q.

Proof of Lemma 5

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: at1 ¡� at2 ¡� � � � ¡� atL ¡� at1 . Note that x2 ¡� x1 implies x2 ¡R x1,

which follows by the way these binary relations are defined. Therefore, the cycle above implies

at1 ¡R at2 ¡R � � � ¡R atL ¡R at1 . Then, there must exist some cut-off point at` . Let us denote

t` � tpqq and at`�1 � btpqq for some q P t1, . . . , Qu. Note that at`�1 � btpqq P Bt` , and it follows

by (16) that at`�1 R ΓpAt`q. Hence it is impossible to have at` ¡� at`�1 , and we conclude that

a cycle as above cannot exist.

Next, we show that for every t P T , at P ΓpAtq. Suppose not. Then there exists some s P T

such that As � At and at P Bs. However, this is impossible, since ASC requires that at R Bs.
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Summarizing, we have shown that ¡� is acyclic and at maximizes ¡� within the set ΓpAtq for

every t P T .

Proof of Lemma 7

Suppose by way of contradiction that τpAq is not unique, i.e. there exist τ1pAq � τ2pAq

that obey (24). Then
��

rPτ1pAq
Arz

�
rPτ1pAq

Br
	
� A and

��
rPτ2pAq

Arz
�
rPτ2pAq

Br
	
� A.

Hence
��

rPτ1pAq
Arz

�
rPτ1pAq

Br
	
Y
��

rPτ2pAq
Arz

�
rPτ2pAq

Br
	
� A, which can be expressed

as
��

rPτ1pAqYτ2pAq
Arz

��
rPτ1pAq

Br Y
�
rPτ2pAq

Br
	�

� A. Then, this implies

�
� ¤
rPτ1pAqYτ2pAq

Ar
I ¤
rPτ1pAqYτ2pAq

Br

�
� � A.

By defining τpAq � τ1pAq Y τ2pAq, we have τpAq � τipAq for i � 1, 2, which contradicts the

maximality of τ1pAq and τ2pAq.

Proof of Lemma 8

To see that Γ obeys SUB, consider A1, A2 � X with A1 � A2, and x P A1 such that x R ΓpA1q.

This means that x P
�
rPτpA1qB

r. Since τp�q is clearly monotonic, it follows that τpA1q � τpA2q,

and hence, x P
�
rPτpA2qB

r. This assures that x R ΓpA2q.

To see that Γ obeys AFP, take any A � X and any x P A with x R ΓpAq. This means that

x P
�
rPτpAqB

r, which in turn implies that

�
� ¤
rPτpAq

Ar
I ¤
rPτpAq

Br

�

� Azx. (41)

The maximality and uniqueness of τp�q, combined with (41), imply τpAq � τpAzxq. On the

other hand, the monotonicity of τp�q implies τpAzxq � τpAq. Hence we have τpAq � τpAzxq.

Then, we have ΓpAzxq � pAzxqz
�
rPτpAzxqB

r � Az
�
rPτpAqB

r � ΓpAq.

Proof of Lemma 9

To see that ¡� is acyclic, suppose to the contrary, that is, there exists a cycle with respect

to ¡�, expressed as: at1 ¡� at2 ¡� � � � ¡� atL ¡� at1 . Note that x2 ¡� x1 implies x2 ¡R x1,
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which follows by the way these binary relations are defined. Therefore, the cycle above implies

at1 ¡R at2 ¡R � � � ¡R atL ¡R at1 . Then, there must exist some cut-off point at` . Let us

denote t` � tpqq and at`�1 � btpqq for some q P t1, . . . , Qu. Note that AtpqqzBtpqq � Atpqq holds,

which implies tpqq P τpAtpqqq, which in turn implies that at`�1 � btpqq P
�
rPτpAtpqqqB

r, and

at`�1 R ΓpAt`q follows. Thus it is impossible to have at` ¡� at`�1 .

Next, we show that for every t P T , at P ΓpAtq. In fact, this follows immediately from

ASLA. For every t P T , we have
��

rPτpAtqA
r
H�

rPτpAtqB
r
	
� At. Then, ASLA requires

at R
�
rPτpAtqB

r. Recalling the definition of Γ in (25), we have at P ΓpAq for every t P T .

Proof of Lemma 10

To prove that ¡� is acyclic, suppose to the contrary, i.e. there is a cycle: at1 ¡� at2 ¡�

� � � ¡� atL ¡� at1 . Since we have ¡��¡R, this cycle implies at1 ¡R at2 ¡R � � � ¡R atL ¡R at1 .

Then there must exist a cut-off point at` , and we have at`�1 P Bt` . By ARS, there exists some

x P At` such that x�1 at`�1 , which in turn implies at`�1 R ΓpAt`q. Then it is impossible to have

at` ¡� at`�1 , and we conclude that ¡� is acyclic.

Now we show that at P ΓpAtq for every t P T . Assume that a data set obeys ARS and Γ is

defined as the set of maximal elements with respect to �1. By way of contradiction, suppose

that for some t P T , at R ΓpAtq. This means that there exists x P Atzat such that x�1at, which

in turn implies x � at. However, this is not possible, since x � at requires at £R x, while we

have at ¡R x. When a data set obeys ATRS and Γ is defined as the set of maximal elements

with respect to �2, at R ΓpAtq implies the existence of some x P Atzat such that x �2 at.

However, this is also impossible, since x�2 at implies the existence of a sequence z1, z2, ..., zk

such that x�1 z1 �1 � � � �1 zk �1 at, and by ATRS, at £R x, which contradicts the assumption

that x P At.
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