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1 Introduction

Economists are often interested in knowing when the action chosen by an agent will increase (ac-

cording to some ordering) with another variable, so that the two may be regarded as complements.

The theory of monotone comparative statics provides conditions on preferences, such as single cross-

ing di↵erences, that guarantee this behavior. The objective of this paper is to provide a revealed

preference analysis of monotone comparative statics. The starting point of our investigation is a

data set collected from an agent where each observation consists of a choice problem and the action

taken by the agent; we ask what conditions on these observations are necessary and su�cient for

them to be consistent with the hypothesis that the agent is choosing according to a preference

that obeys single crossing di↵erences. This is an important question because, if the hypothesis is

supported, then there are grounds for believing that any complementarity observed in the data will

hold more generally, even outside the set of observations.

This introduction sets out the themes in this paper and summarizes our conclusions. The

results discussed in Section 1.n are treated in detail in Section n 2 (for n 1, 2, and 3). Section

2 summarizes some of the key results in monotone comparative statics and games with strategic

complementarity that motivate our analysis.

1.1 Single Crossing Di↵erences and Revealed Complementarity

Consider an agent i who, after observing the realization of some exogenous variable, chooses an

action from a feasible set. There is a binary relation
i

on x
i

, ⇠
i

R R, where x
i

is a possible

action for agent i and ⇠
i

is some exogenous variable that may a↵ect the agent’s choice. With some

abuse of terminology, we call
i

a preference if, for any fixed ⇠
i

, the restriction of
i

to the set

x
i

, ⇠
i

: a
i

R is a complete, reflexive, and symmetric relation. Given ⇠
i

and a feasible action set

A
i

R, agent i’s optimal choice (or best response) is

BR ⇠
i

, A
i

,
i

x
i

A
i

: x
i

, ⇠
i i

x
i

, ⇠
i

for all x
i

A
i

. (1)

What conditions guarantee that BR ⇠
i

, A
i

is increasing in ⇠
i

, in the sense that every element

in BR ⇠
i

, A
i

is greater than every element in BR ⇠
i

, A
i

, when ⇠
i

⇠
i

? A fundamental result in
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monotone comparative statics says that, for this to hold on every set A
i

, it is necessary and su�cient

that
i

obeys strict single crossing di↵erences (Milgrom and Shannon, 1994). This property says

that for every x
i

x
i

and ⇠
i

⇠
i

,

x
i

, ⇠
i

i

x
i

, ⇠
i

x
i

, ⇠
i

i

x
i

, ⇠
i

,

where
i

is the strict preference induced by
i

. In the case where we restrict the feasible action

sets A
i

to intervals of R, then strict single crossing di↵erences can be weakened and replaced by the

strict interval dominance property (Quah and Strulovici, 2009), which says that

x
i

, ⇠
i

i

x
i

, ⇠
i

for all x
i

x
i

, x
i

x
i

, ⇠
i

i

x
i

, ⇠
i

.

These basic results motivate the following revealed preference problem. Suppose an observer

has access to a data set with T observations, O
i

at
i

, ⇠t
i

, At

i

T

t 1, where a
t

i

is the action chosen by

agent i under the treatment ⇠t
i

, At

i

, when the exogenous variable is ⇠t
i

and the feasible action set

is At

i

, which we assume is a compact interval of R. What condition on O
i

will guarantee that there

exists a binary relation
i

defined over x
i

, ⇠
i

R R that obeys the interval dominance order

and rationalizes the agent’s behavior in the sense that at
i

BR ⇠t
i

, At

i

,
i

? It turns out that this

hinges on an easy-to-check and easy-to-understand property on O
i

we call the axiom of revealed

complementarity (ARC). Suppose that, through his choices, the agent reveals a preference for a

over a , at a given realization of the exogenous variable. This can be a direct revelation in the sense

that a was chosen when a was feasible at some observation, or it could be revealed indirectly via

transitive closure (for example, if a was chosen when b was available at some observation and b was

chosen when a was available at another observation). ARC says the following: if the agent reveals

a preference for a over a with a a when ⇠
i

� then the agent cannot reveal a preference for

a over a at some ⇠
i

� � . We show that any data set collected from an agent choosing with

a preference obeying strict interval dominance must obey ARC and any data set that obeys ARC

is rationalizable by a preference obeying strict single crossing di↵erences.1

1Readers familiar with Afriat’s Theorem may notice a parallel in the following sense: the general axiom of revealed
preference (GARP) is necessary whenever the consumer is maximizing a locally nonsatiated preference while GARP
is su�cient to guarantee a stronger conclusion: that there is a continuous, strictly increasing, and concave function
rationalizing the data. In our case, ARC is necessary for strict interval dominance and su�cient for strict single
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1.2 Games with strategic complementarity

An important application of monotone comparative statics is to the study of games with strategic

complementarity (see Milgrom and Roberts (1990) and Vives (1990)). These are games where

players’ strategies are complements in the sense that an agent’s best response increases with the

action of other players in the game. These games are known to be very well-behaved: they always

have pure strategy Nash equilibria; in fact, there is always a largest and a smallest pure strategy

Nash equilibrium and a parameter change that leads to one agent having a greater best response

will raise both the largest and smallest equilibrium.

In this context it is natural to pose a revealed preference question analogous to the one we

posed in the single agent case. For each player i (i 1, 2, ..., n), suppose we observe the feasible

action set At

i

(assumed to be a compact interval), the action chosen by the player, at
i

At

i

, and an

exogenous variable yt
i

(drawn from a poset) that a↵ects player i’s action. An observation t may be

succinctly written as at, yt, At (where at at
i

n

i 1, etc.) such that at is the observed action profile

in the treatment yt, At and the data set is O at, yt, At T

t 1. Then we can ask whether the

data set is consistent with the hypothesis that the observations constitute Nash equilibria in games

with strategic complementarity. Notice that this hypothesis is at least internally consistent since

we know that these games always have pure strategy Nash equilibria. The answer to our question

is straightforward given the single-agent results: all we need to do is to check that each player’s

choices obey ARC, in the sense that, for all i, O
i

at
i

, ⇠t
i

, At

i

T

t 1, where ⇠
i

at
i

, yt
i

, obeys

ARC. (From player i’s perspective, the variables a↵ecting his preference are the realized value of y
i

and the actions of other players.)

When the data set O obeys ARC (in the sense that every player obeys ARC), it would be

natural to exploit this data to make predictions of the outcome in a new game, with di↵erent

feasible action sets A0 A0
i

n

i 1 and di↵erent exogenous variables y0 y0
i

n

i 1, assuming that the

players’ preferences obey single crossing di↵erences and remain unchanged. We provide a procedure

for working out the set of all possible Nash equilibria in this new game. We also show that this set

has properties that echo those of a set of Nash equilibria in a game with stratgic complementarity:

while the set itself may not have a largest or smallest element, its closure does have a largest and

crossing di↵erences (which is a stronger property).
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a smallest element and these extremal elements increase with y0.

1.3 Revealed preference tests on cross sectional data

So far we have considered an observer who records the behavior of an agent or a group of agents

across a sequence of di↵erent treatments. It is not always possible to obtain data of this type in

empirical settings. Suppose instead that, at each treatment, we observe the joint actions taken

by a large population of n-player groups. Formally, the data set is O µt, yt, At T

t 1, where

µt is a distribution on At. In this case, the natural generalization of our notion of rationalization

is to require that the population can be decomposed into segments such that all groups within a

segment have the same equilibrium play across treatments and the equilibrium play is consistent

with strategic complementarity. This rationalization concept captures the idea that treatments

have been randomly assigned across the whole population of groups, so that the distribution of

‘group types’ is the same across treatments; it allows for preference heterogeneity in the population

but requires every group type to be consistent with strategic complementarity. We show that it is

possible to check whether O µt, yt, At T

t 1 is consistent with strategic complementarity in this

sense by solving a certain system of linear equations. When a data set passes this test, we provide

a procedure to estimate the distribution of equilibrium responses in the population under a new

treatment, again by solving an appropriate linear program.

1.4 Application: spousal influence in smoking behavior

To illustrate the use of our techniques, we apply them to investigate whether spouses influence each

other in their cigarette smoking behavior. The US census provides information on tobacco use in

married couples and smoking policies at their workplaces (whether it is permitted or not).2 The

latter plays the role of the exogenous variable in our analysis and couples are modeled as playing a

2 2 game, where the action is either ‘not smoke’ or ‘smoke’. Strategy sets of both players do not

vary in this application and so there are precisely four treatments, corresponding to the di↵erent

combinations of workplace policies for the couple. The hypothesis is that couples in the population

2The data is taken from the years 1992-93, when there were still significant numbers of workplaces that permitted
smoking.
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are playing games of strategic complementarity, where a husband’s (wife’s) smoking decision is

nondecreasing with respect to the spouse’s smoking behavior and the workplace smoking policy

(with the ordering being the intuitive one). Under each treatment, there are four pure-strategy

outcomes, so there are 44 256 ways a couple could vary its behavior across the four treatments.

It can be shown that 64 of these are consistent with strategic complementarity, so the hypothesis

is that the entire population consists of groups belonging to one of these 64 types. We show that

the data set does not pass the rationalizability test exactly; however, the failure is not statistically

significant, so the strategic complementarity hypothesis cannot be rejected.

1.5 Literature Review

Topkis (1998, Theorem 2.8.9) reports a revealed preference-type result in a monotone choice en-

vironment. He considers a correspondence ' : T R` that maps elements of a totally ordered

set T to compact sublattices of the Euclidean space Rl. He shows that this correspondence is

increasing in the strong set order if and only if there is a function f : R` T R such that

' t argmax
x R` f x, t where f is supermodular in x and has increasing di↵erences in x, t .

Notice that the rationalizability concept used by Topkis is more stringent than the one we employ

since the optimal choices under f must coincide with (rather than simply contain) ' t . In the

case where ' is a choice function, it is not hard to see that such a rationalization is possible even

when T is a partially (rather than totally) ordered set; this has been noted by Carvajal (2004) who

also applies it to a game setting. In our paper, we confine ourselves to the case where actions are

totally ordered (rather than elements of a Euclidean space) and allow observations of choices made

from di↵erent subsets of the set of all possible actions. Consequently, at a given parameter value,

the observer may have partial information on the agent’s ranking over di↵erent actions rather than

simply the globally optimal action. In this respect, the problem is more complicated than the one

posed by Topkis, because the rationalizing preference we construct has to agree with this wider

range of preference information (in addition to obeying single crossing di↵erences).

The extension of our revealed preference tests to cross-sectional data sets with unobserved het-

erogeneity follows an approach that has been taken by other authors (see McFadden and Richter

(1991), McFadden (2005), and Manski (2007)). Manski (2007) also discusses making predictions
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in unobserved treatments, subject to a particular theory of behavior, and our approach to this

issue is in essence the same as his. (He did not, however, consider the specific theory relating to

single crossing di↵erences discussed here). Echenique and Komunjer (2009) develop a structural

model that could be used to test for strategic complementarity in certain special classes of games,

including two person games. Their test relies on a stochastic equilibrium selection rule that places

strictly positive probability on the extremal elements of the set of Nash equilibria and checks cer-

tain observable properties implied by strategic complementarity; the su�ciency of those properties

(for rationalizability) is not addressed. Aradillas-Lopez (2011) provides nonparametric probability

bounds for Nash equilibrium actions for a class of games with characteristics that are similar to,

but distinct from, games with strategic complementarity. There are also papers where actions are

assumed to be strategic complements or substitutes in order to sharpen inference or predictions of

one type or another. For example, Kline and Tamer (2012) employ such assumptions to provide

nonparametric bounds for best-replies in the context of binary games; other papers of this type

include Molinari and Rosen (2008), Uetake and Watanabe (2013), and Lazzati (2015). By and

large, the emphasis in these papers is not to test for strategic complementarity but to exploit it as

an assumption; indeed the model may not include the type of exogenous treatment variation that

makes the assumption refutable.

For our empirical implementation at the end of the paper, we test for strategic complementarity

in smoking behavior among married couples by taking advantage of the variation in workplace

smoking policies. Cutler and Glaeser (2010) also exploit this variation for essentially the same

purpose but their work di↵ers from ours in that they use a reduced form parametric model of smoking

behavior; like us, they find evidence of complementarity in smoking behavior among married couples.

While our theoretical results on testing for complementarity are developed in an idealized setting

where population distributions are known, we must necessarily account for sampling variation in the

application; for this we rely on the econometric procedure devised by Kitamura and Stoye (2013).

Those authors use their procedure to implement the test for the strong axiom of revealed preference

on cross sectional data sets (as developed by McFadden and Richter (1991)), but it applies equally

well to our model and to others with a similar structure (such as those discussed in Manski (2007)).
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2 Basic concepts and theory

Our objective in this section is to give a quick review of some basic concepts and results in monotone

comparative statics and of their application to games with strategic complementarities. This will

motivate the revealed preference theory developed later in the paper.

2.1 Monotone choice on intervals

Let X
i

R be the set of all conceivable actions of an agent i. A feasible action set of agent i

is a subset A
i

of X
i

. We assume that A
i

is compact in R and that it is an interval of X
i

. We

say that a set A
i

X
i

is an interval of X
i

if, whenever x , x A
i

, with x x , then, for any

element x̃ X
i

such that x x̃ x , x̃ A
i

. Given that A
i

is both compact and an interval,

we can refer to it as a compact interval. It is clear that there must be a
i

and ā
i

in A
i

such that

A
i

x
i

X
i

: a
i

x
i

ā
i

and it is sometimes convenient to denote A
i

by a
i

, ā
i

. We denote by

A
i

the collection of all compact intervals ofX
i

. We assume that agent i’s choice over di↵erent actions

in a feasible action set A
i

is a↵ected by a parameter ⇠
i

, where ⇠
i

is drawn from a partially ordered

set (or poset, for short) ⌅
i

, ; ⇠
i

may include certain exogenous variables and/or the actions of

other agents (when we extend the analysis to a game). For the sake of notational simplicity, we

are using the same notation for the orders on X
i

and ⌅
i

and for any other ordered sets; we do not

anticipate any danger of confusion.

A binary relation
i

on X
i

⌅
i

is said to be a preference of agent i if, for every fixed ⇠
i

⌅
i

,

i

is a complete, reflexive and transitive relation on X
i

. We call a preference
i

regular if, for all

A
i

A
i

and ⇠
i

, the set BR
i

⇠
i

, A
i

,
i

(which we may shorten to BR
i

⇠
i

, A
i

when there is no danger

of confusion), as defined by (1), is nonempty and compact in R. We refer to BR
i

⇠
i

, A
i

as agent

i’s best response or optimal choice at ⇠
i

, A
i

. The best response of agent i is said to be monotone

or increasing in ⇠
i

if, for every ⇠
i

⇠
i

,

a
i

BR
i

⇠
i

, A
i

and a
i

BR
i

⇠
i

, A
i

a
i

a
i

. (2)
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The preference
i

is said to obey strict interval dominance (SID) if, for every x
i

x
i

and ⇠
i

⇠
i

,

x
i

, ⇠
i

i

x
i

, ⇠
i

for all x x
i

, x
i

x
i

, ⇠
i

i

x
i

, ⇠
i

, (3)

where
i

is the asymmetric part of
i

, i.e., x
i

, ⇠
i i

y
i

, ⇠
i

if x
i

, ⇠
i i

y
i

, ⇠
i

and y
i

, ⇠
i i

x
i

, ⇠
i

. We denote the symmetric part of
i

by
i

, i.e., x
i

, ⇠
i i

y
i

, ⇠
i

if x
i

, ⇠
i i

y
i

, ⇠
i

and

y
i

, ⇠
i i

x
i

, ⇠
i

. The following result is a straightforward adaptation of Theorem 1 in Quah and

Strulovici (2009). We shall re-prove it here because of its central role in this paper.

Theorem A. Suppose
i

is a regular preference on X
i

⌅
i

. Then agent i has a monotone best

response correspondence if and only if
i

obeys strict interval dominance.

Proof. To show that
i

obeys SID, suppose that, for some x
i

x
i

and ⇠
i

⇠
i

, the left

side of (3) holds. Letting A
i

x
i

, x
i

, we obtain x
i

BR
i

⇠
i

, A
i

. Hence, by (2), it also holds

that x
i

BR
i

⇠
i

, A
i

. If x
i

, ⇠
i

i

x
i

, ⇠
i

were to hold, then x
i

BR
i

⇠
i

, A
i

. However, then

we have that x
i

BR
i

⇠
i

, A
i

, x
i

BR
i

⇠
i

, A
i

, and x
i

x
i

, which contradicts (2). Therefore,

x
i

, ⇠
i

i

x
i

, ⇠
i

. Conversely, suppose ⇠
i

⇠
i

, x
i

BR
i

⇠
i

, A
i

and x
i

BR
i

⇠
i

, A
i

. If x
i

x
i

,

then x
i

, ⇠
i

i

x
i

, ⇠
i

for every x
i

x
i

, x
i

A
i

. SID guarantees that x
i

, ⇠
i

i

x
i

, ⇠
i

, which

contradicts the assumption that x
i

BR
i

⇠
i

, A
i

.

Readers familiar with the standard theory of monotone comparative statics will notice that our

definition of monotonicity in (2) is stronger than the standard notion, which merely requires that

BR
i

⇠
i

, A
i

dominates BR
i

⇠
i

, A
i

in the strong set order. This means that, for any x
i

BR
i

⇠
i

, A
i

and x
i

BR
i

⇠
i

, A
i

, max x
i

, x
i

BR
i

⇠
i

, A
i

and min x
i

, x
i

BR
i

⇠
i

, A
i

. In turn, this weaker

notion of monotonicity can be characterized by preferences obeying interval dominance (rather than

strict interval dominance), which is defined as follows: for every x
i

x
i

and ⇠
i

⇠
i

,

x
i

, ⇠
i

i i

x
i

, ⇠
i

for every x
i

x
i

, x
i

x
i

, ⇠
i

i i

x
i

, ⇠
i

. (4)

(The reader can verify this claim by a straightforward modification of the proof of Theorem A or

by consulting Theorem 1 in Quah and Strulovici (2009).) Throughout this paper we have chosen to

work with a stronger notion of monotonicity; the weaker notion does not permit meaningful revealed
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preference analysis because it does not exclude the possibility that an agent is simply indi↵erent to

all actions at every ⇠
i

. In this sense, our stronger assumption here is analogous to the assumption

of local non-satiation made in Afriat’s Theorem.3

The interval dominance order is Quah and Strulovici’s (2009) generalization of single crossing

di↵erences, due to Milgrom and Shannon (1994). Just as there is strict interval dominance, so there

is a strict version of single crossing di↵erences. We say that a preference relation
i

has strict single

crossing di↵erences (SSCD) if, for every x
i

x
i

and ⇠
i

⇠
i

,

x
i

, ⇠
i

i

x
i

, ⇠
i

x
i

, ⇠
i

i

x
i

, ⇠
i

. (5)

It is clear that every preference that obeys SSCD will also satisfy SID. Hence, it is obvious from

Theorem A that if
i

is a regular preference on X
i

⌅
i

that obeys SSCD, then agent i has a

monotone best response correspondence BR
i

⇠
i

, A
i

for every interval A
i

A
i

.4

2.2 Strategic complementarity

An important application of monotone comparative statics is to the study of games with strategic

complementarity. Let N 1, 2, ...., n be the set of agents in a game, and let X
i

R be the

set of all conceivable actions of agent i. We assume that i has a feasible action set A
i

that is a

compact interval of X
i

; as before, the family of compact intervals of X
i

is denoted by A
i

. Agent

i’s choice over di↵erent feasible actions is a↵ected by the actions of other players and also by an

exogenous variable y
i

, which we assume is drawn from a poset Y
i

, . Let ⌅
i

X
i

Y
i

, where

X
i

:
j i

X
j

. A typical element of ⌅
i

is denoted by ⇠
i

x
i

, y
i

and ⌅
i

is a poset if we endow

it with the product order. We assume that agent i has a preference
i

on X
i

⌅
i

, in the sense

defined in Section 2.1.

Given a profile of regular preferences
i i N

, a joint feasible action set A A
i N

A
i

, and

3It is clear that without such an assumption, any type of consumption data is rationalizable since one could
simply suppose that the consumer is indi↵erent across all consumption bundles. For a statement and proof of
Afriat’s Theorem see Varian (1982).

4In fact, SSCD of a preference ensures more than that: it is necessary and su�cient for the monotonicity of a
best response correspondence on arbitrary feasible action sets and not only interval feasible action sets. On the
relationship between single crossing di↵erences and the interval dominance order, see Quah and Strulovici (2009).
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a profile of exogenous variables y Y
i N

Y
i

, we can define a game

G y, A y
i i N

, A
i i N

,
i i N

.

We say that the family of games G G y, A
y,A Y A exhibits strategic complementarity if, for

every A A, the best response of each agent i (as given by (1)) is monotone in ⇠
i

x
i

, y
i

.

It is clear from Theorem A that the family of games G G y, A
y,A Y A exhibits strategic

complementarity if and only if
i

is an SID preference for every agent i.

Example 1. Consider a Bertrand oligopoly with n firms, with each firm producing a single

di↵erentiated product. Assume that firm i has constant marginal cost c
i

0, faces the de-

mand function D
i

p
i

, p
i

: R Rn 1 R , and chooses its price p
i

0 to maximize profit

⇧
i

p
i

, p
i

, c
i

p
i

c
i

D
i

p
i

, p
i

. Suppose that the firms’ products are substitutes in the sense

that the own-price elasticity of demand,

p
i

D
i

p
i

, p
i

D
i

p
i

p
i

, p
i

is strictly falling with respect to p
i

(the prices charged by other firms). Then, the profit of each firm

has SSCD in p
i

; p
i

, c
i

. Hence, on any compact interval of prices, firm i’s set of profit-maximizing

prices is monotone in p
i

, c
i

.5 If this property holds for every firm in the industry, the collection

of Bertrand games generated by di↵erent feasible price sets to each firm and di↵erent exogenous

variables, c c
i i N

, will constitute a collection of games exhibiting strategic complementarity.

It is known that the set of Nash equilibria of a game with strategic complementarity (even in the

weaker sense of best responses increasing in the strong set order) is particularly well-behaved. The

following result summarizes some of its properties. For our purposes, the most important feature of

these games is that they always have pure strategy Nash equilibria, so it is not a priori unreasonable

to hypothesize that players are playing a pure strategy Nash equilibrium in such a game.

Theorem B. Suppose G G y, A
y,A Y A exhibits strategic complementarity. Then, for every

game G y, A G, the set of pure strategy Nash equilibria E y,A is a nonempty complete lattice

5Specifically, they guarantee that for any pi pi, ln⇧ pi , p i, ci ln⇧ pi, p i, ci is strictly increasing in p i, ci ,
which implies SSCD (see, Milgrom and Shannon (1994)).
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and, in particular, it has a largest and a smallest Nash equilibrium. Furthermore, both the largest

and smallest Nash equilibria are increasing in y.

The set of Nash equilibria of G y, A coincides with the fixed points of the joint best response

correspondence BR , y, A : A A, where, denoting x
i

, y
i

by ⇠
i

,

BR x, y, A BR1 ⇠1, A1 ,BR2 ⇠2, A2 , ...,BR
n

⇠
n

, A
n

.

Both the non-emptiness and structure of E y,A flow from the fact that this is a very well-behaved

correspondence. Indeed, under strategic complementarity, BR
i

⇠
i

, A
i

is increasing in ⇠
i

(in the

sense of (2), for all i) and so BR x, y, A is increasing in x, y .6

3 Revealed monotone choice

Consider an observer who collects a finite data set from agent i, where each observation consists of

the action chosen by the agent, the set of feasible actions, and the value of the parameter. Formally,

the data set is O
i

at
i

, ⇠t
i

, At

i

t T , where T 1, 2, ..., T . This means that, at observation t, the

agent is subjected to the treatment ⇠t
i

, At

i

⌅t

i

A
i

and chooses the action at
i

At

i

. We say that O
i

(or simply, agent i) is consistent with monotonicity or monotone-rationalizable if there is a regular

and SID preference
i

on X
i

⌅
i

such that for every t T , at
i

, ⇠t
i

i

x
i

, ⇠t
i

for every x
i

At

i

. The

motivation for this definition is clear given Theorem A: if O
i

is monotone-rationalizable then we

have found a preference that (i) accounts for the observed behavior of the agent and (ii) guarantees

that the agent’s optimal choice based on this preference is increasing in ⇠
i

, on any feasible action

set that is an interval. Our principal objective in this section is to characterize those data sets that

are monotone-rationalizable.
6See Topkis (1998) for the proof of Theorem B. The complete lattice structure of E A, y was first pointed out in

Zhou (1994), and the monotone comparative statics of extremal equilibria is found in Milgrom and Roberts (1990).
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3.1 The axiom of revealed complementarity

We first introduce the revealed preference relations induced by O
i

. The direct revealed preference

relation R

i

is defined in the following way: x
i

, ⇠
i

R

i

x
i

, ⇠
i

if x
i

, ⇠
i

at
i

, ⇠t
i

and x
i

At

i

for some t T . The indirect revealed preference relation RT

i

is the transitive closure of R

i

, i.e.,

x
i

, ⇠
i

RT

i

x
i

, ⇠
i

if there exists a finite sequence z1
i

, z2
i

, ..., zk
i

in X
i

such that

x
i

, ⇠
i

R

i

z1
i

, ⇠
i

R

i

z2
i

, ⇠
i

R

i

... R

i

zk
i

, ⇠
i

R

i

x
i

, ⇠
i

. (6)

The motivation for this terminology is clear. If we observe, at some treatment ⇠
i

, A
i

, agent i

playing x
i

when x
i

A
i

, then it must be the case that x
i

, ⇠
i i

x
i

, ⇠
i

if agent i is optimizing

with respect to the preference
i

. Furthermore, given that
i

is transitive, if x
i

, ⇠
i

RT

i

x
i

, ⇠
i

then x
i

, ⇠
i i

x
i

, ⇠
i

.7

A relation R on X
i

⌅
i

said to have the interval property if, whenever x
i

, ⇠
i

R x̃
i

, ⇠
i

, for x
i

,

x̃
i

in X
i

, then x
i

, ⇠
i

R z
i

, ⇠
i

for any z
i

between x
i

and x̃
i

, i.e., x
i

z
i

x̃
i

or x̃
i

z
i

x
i

. This

property plays an important role in our results. The lemma below uses the assumption that feasible

action sets are compact intervals to guarantee that RT

i

has the interval property.

Lemma 1. The relation RT

i

in X
i

⌅
i

induced by O
i

at
i

, ⇠t
i

, At

i

T

t 1 has the interval property.

Proof. If x
i

, ⇠
i

R

i

x
i

, ⇠
i

, then there is At

i

such that x
i

at
i

and x
i

At

i

. Since At

i

is an interval, it is clear that x
i

, ⇠
i

R

i

x
i

, ⇠
i

for any x
i

between x
i

and x
i

. Now suppose

x
i

, ⇠
i

RT

i

x
i

, ⇠
i

, but x
i

, ⇠
i

R

i

x
i

, ⇠
i

. Then, we have a sequence like (6). Suppose also that

x
i

x
i

and consider x
i

such that x
i

x
i

x
i

. (The case where x
i

x
i

can be handled in a

similar way.) Letting z0
i

x
i

and zk 1
i

x
i

, we know that there exists at least one 0 m k

such that zm
i

x
i

zm 1. Since zm
i

, ⇠
i

R

i

zm 1
i

, ⇠
i

, it must hold that zm
i

, ⇠
i

R

i

x
i

, ⇠
i

. This

in turn implies that x
i

, ⇠
i

z0
i

, ⇠
i

RT

i

x
i

, ⇠
i

, since z0
i

, ⇠
i

RT

i

zm
i

, ⇠
i

.

Definition 1. The data set O
i

at
i

, ⇠t
i

, At

i

T

t 1 obeys the Axiom of Revealed Complementarity

7Note, however, that R
i and RT

i are not generally complete on Xi for every fixed ⇠i; as such, these relations
are not preferences as we have defined them.
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(ARC) if, for every s, t T ,

⇠t
i

⇠s
i

, at
i

as
i

, and as
i

, ⇠s
i

RT

i

at
i

, ⇠s
i

at
i

, ⇠t
i

RT

i

as
i

, ⇠t
i

. (7)

It is clear that ARC is a non-vacuous restriction on data. So long as the number of observations

O
i

is finite (as it is by assumption), checking whether two elements as
i

, ⇠s
i

and at
i

, ⇠s
i

are related

by RT

i

is a finite procedure and, consequently, so is checking for ARC. It is also clear that there are

no computational di�culties, whether theoretical or practical, associated with the implementation

of this test.

For a data set to obey monotone-rationalizability, it is necessary that it obeys ARC. Indeed,

suppose there are observations s and t such that ⇠t
i

⇠s
i

, at
i

as
i

, and as
i

, ⇠s
i

RT

i

at
i

, ⇠s
i

. By

Lemma 1, RT

i

has the interval property, and so as
i

, ⇠s
i

RT

i

x
i

, ⇠s
i

for all x
i

at
i

, as
i

. Since

O
i

is SID-rationalizable, there is an SID preference
i

on X
i

⌅
i

such that as
i

, ⇠s
i

i

x
i

, ⇠s
i

for all x
i

at
i

, as
i

. The SID property on
i

guarantees that as
i

, ⇠t
i

i

at
i

, ⇠t
i

, which means

at
i

, ⇠t
i

RT

i

as
i

, ⇠t
i

.

Our more substantial claim is that ARC is also su�cient for monotone-rationalizability. In fact,

an even stronger property is true: whenever a data set obeys ARC, it is rationalizable by an SSCD

(and not just SID) preference.8 The next result summarizes our main findings.

Theorem 1. The following statements on the data set O
i

at
i

, ⇠t
i

, At

i

t T are equivalent:

(a) O
i

is monotone-rationalizable.

(b) O
i

obeys ARC.

(c) O
i

is rationalizable by a regular and SSCD preference relation on X
i

⌅
i

.

Since every SSCD preference is also an SID preference, c implies a , and we have just shown

that (a) implies (b). It remains for us to show that (b) implies (c). Our proof involves first working

8This phenomenon, which may seem surprising, is not unknown to revealed preference analysis; for example, it
is present in Afriat’s Theorem. In that context, the data consist of observations of consumer’s consumption bundles
at di↵erent linear budget sets. If the agent is maximizing a locally non-satiated preference, then the data set must
obey a property called the generalized axiom of revealed preference (GARP, for short); conversely, if a data set obeys
GARP then it can be rationalized by a preference that is not just locally non-satiated but also obeys continuity,
strong monotonicity, and convexity.

14



out the (incomplete) revealed preference relations on X
i

⌅
i

that must be satisfied by any SID

preference that rationalizes the data and then explicitly constructing a rationalizing preference on

X
i

⌅
i

that completes that incomplete relation and obeys SSCD.

GivenO
i

, the single crossing extension of the indirect revealed preference relation RT

i

is another

binary relation RTS

i

defined in the following way:

(i) for x
i

x
i

, x
i

, ⇠
i

RTS

i

x
i

, ⇠
i

if there is ⇠
i

⇠
i

such that x
i

, ⇠
i

RT

i

x
i

, ⇠
i

;

(ii) for x
i

x
i

, x
i

, ⇠
i

RTS

i

x
i

, ⇠
i

, if there is ⇠
i

⇠
i

such that x
i

, ⇠
i

RT

i

x
i

, ⇠
i

.

Let RTS

i

be the binary relation given by RTS

i

RT

i

RTS

i

. (Note that RTS

i

is not the

asymmetric part of RTS

i

.) It follows immediately from its definition that RTS

i

also has strict

single crossing di↵erences, in the following sense: if x
i

x
i

and ⇠
i

⇠
i

or x
i

x
i

and ⇠
i

⇠
i

,

then

x
i

, ⇠
i

RTS

i

x
i

, ⇠
i

x
i

, ⇠
i

RTS

i

x
i

, ⇠
i

. (8)

In addition, let RTST

i

be the transitive closure of RTS

i

, i.e., x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

if there exists a

sequence z1
i

, z2
i

, ..., zk
i

such that

x
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zk
i

, ⇠
i

RTS

i

x
i

, ⇠
i

. (9)

If we can find at least one strict relation RTS

i

in the sequence (9), then, we let x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

(which, once again, is not the asymmetric part of RTST

i

). The relevance of the binary relations

RTST

i

and RTST

i

flows from the following result, which says that any rationalizing preference for

agent i must respect the ranking implied by them.

Proposition 1. Suppose that the preference
i

obeys SID and rationalizes O
i

at
i

, ⇠t
i

, At

i

t T .

Then
i

extends RTST

i

and RTST

i

in the following sense:

x
i

, ⇠
i

RTST

i

RTST

i

x
i

, ⇠
i

x
i

, ⇠
i i i

x
i

, ⇠
i

(10)

Proof. Without loss of generality, we may let x
i

x
i

. Since
i

is transitive, it is clear

that we need only show that x
i

, ⇠
i i i

x
i

, ⇠
i

whenever x
i

, ⇠
i

RTS

i

RTS

i

x
i

, ⇠
i

. If
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x
i

, ⇠
i

RTS

i

RTS

i

x
i

, ⇠
i

then there exists some ⇠
i

⇠
i

such that x
i

, ⇠
i

RT

i

x
i

, ⇠
i

. By

the interval property of RT

i

, we obtain x
i

, ⇠
i

RT

i

x
i

, ⇠
i

for all x
i

x
i

, x
i

. Since
i

rationalizes

O
i

, we also have x
i

, ⇠
i

i

x
i

, ⇠
i

for all x
i

x
i

, x
i

. By SID of
i

, we obtain x
i

, ⇠
i i i

x
i

, ⇠
i

for ⇠
i

⇠
i

.

At this point, it is reasonable to ask if we could go beyond the revealed preference relations we

have already constructed and consider the single crossing extension of RTST

i

, the transitive closure

of that extension, and so on. The answer to that is ‘no’ because, as we shall show in Lemma 2,

RTST

i

obeys SSCD, so it does not admit a nontrivial single crossing extension. By Proposition 1,

it is clear that, in order for O
i

to be monotone rationalizable, the binary relation RTST

i

must have

the following property: for any x
i

, ⇠
i

and x
i

, ⇠
i

in X
i

⌅
i

,

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

. (11)

If not, we obtain simultaneously, x
i

, ⇠
i i

x
i

, ⇠
i

and x
i

, ⇠
i i

x
i

, ⇠
i

, which is impossible.

The following lemma summarizes our observations on RTST

i

.

Lemma 2. Suppose that O
i

obeys ARC. Then RTST

i

obeys SSCD and property (11).

Since R

i

RTST

i

, it is clear that Proposition 1 has a converse: if there is a regular and SID

preference
i

on X
i

⌅
i

that obeys (10), then this preference rationalizes O
i

. This observation,

together with Lemma 2, suggest that a reasonable way of constructing a rationalizing preference is

to begin with RTST

i

and RTST

i

and then complete these incomplete relations in a way that gives a

preference with the required properties, which is precisely the approach we take. Define the binary

relation
i

on X
i

⌅
i

in the following manner:

x
i

, ⇠
i

i

x
i

, ⇠
i

if x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

or x
i

, ⇠
i

kRTST

i

x
i

, ⇠
i

and x
i

x
i

, (12)

where x
i

, ⇠
i

kRTST

i

x
i

, ⇠
i

means neither x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

nor x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

. The

following result (which we prove in the Appendix with the help of Lemma 2) completes our argument

that (b) implies (c) in Theorem 1.
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Lemma 3. Suppose that O
i

obeys ARC. The binary relation
i

is an SSCD preference that ratio-

nalizes O
i

. On every set K X
i

that is compact in R and for every ⇠
i

⌅
i

, BR
i

⇠
i

, K,
i

is

nonempty and finite; in particular,
i

is a regular preference

3.2 ARC and SSCD

Theorem 1 tells us that when an agent has an SID preference, then any data set collected from

this agent must obey ARC. It also says that if a data set obeys ARC, then the agent’s actions

can be accounted for by an SID preference, and moreover, we can explicitly construct a preference

consistent with those observations that obey the stronger property of SSCD. It is known that SSCD

is su�cient (and, in fact, also necessary in some sense) for an agent’s optimal action to be increasing

with the parameter ⇠
i

on all arbitrary constraint sets drawn fromX
i

(see Edlin and Shannon (1998)).

It follows that when a data set O
i

is monotone-rationalizable, we can find a preference that both

explains the data and guarantees that the optimal choices based on this preference is monotone, on

any arbitrary feasible action set (and not just intervals).

So far we have maintained the assumption that the observed feasible action sets At

i

are intervals.

Now consider a data set O
i

at
i

, ⇠t
i

, Bt

i

t T , where at
i

is the observed choice from Bt

i

, and Bt

i

is a

compact subset ofX
i

that is not necessarily an interval. It is easy to check that if O
i

is rationalizable

by an SSCD preference then it must obey ARC and, given the characterization of SSCD preferences,

we may be tempted to think that the converse is also true. However, as the following example shows,

that is not the case and so a revealed preference theory built around arbitrary observed feasible

action sets and SSCD must involve a data set property di↵erent from ARC; we leave this interesting

issue to further research.

Example 2. Let X
i

u
i

, v
i

, w
i

with u
i

v
i

w
i

, and let A1
i

u
i

, w
i

, A2
i

u
i

, v
i

, and

A3
i

v
i

, w
i

. Note that A1
i

is not an interval of X
i

. Suppose that ⇠1
i

⇠2
i

⇠3
i

, and that a1
i

w
i

,

a2
i

u
i

, and a3
i

v
i

. Then w
i

, ⇠1
i

R

i

u
i

, ⇠1
i

, u
i

, ⇠2
i

R

i

v
i

, ⇠2
i

, and v
i

, ⇠3
i

R

i

w
i

, ⇠3
i

. The

indirect revealed preference relation RT

i

is equal to the direct revealed preference relation R

i

in this

example and, clearly, this set of three observations obeys ARC. However, it cannot be rationalized

by an SSCD preference. Suppose, instead that an SSCD preference
i

rationalizes the data. Then,

it must hold that w
i

, ⇠1
i

i

u
i

, ⇠1
i

and, by SSCD, w
i

, ⇠2
i

i

u
i

, ⇠2
i

. In addition, we have
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u
i

, ⇠2
i

i

v
i

, ⇠2
i

and so w
i

, ⇠2
i

i

v
i

, ⇠2
i

. Since
i

obeys SSCD, we obtain w
i

, ⇠3
i

i

v
i

, ⇠3
i

,

which contradicts the direct revealed preference v
i

, ⇠3
i

i

w
i

, ⇠3
i

.

3.3 Out-of-sample predictions

Suppose an observer collects a data set O
i

at
i

, ⇠t
i

, At

i

t T that is monotone rationalizable, and

then, maintaining that hypothesis, asks the following question: what do the observations in O
i

say

about the set of possible choices of agent i in some treatment ⇠0, A0 ⌅
i

A?9 If O
i

obeys ARC,

then we know that the set of all SID preferences that rationalize O
i

, call it P
i

, is nonempty. For

each
i

P
i

, the set of best responses at ⇠0
i

, A0
i

is BR
i

⇠0
i

, A0
i

,
i

, and hence the set of possible

best responses at ⇠0
i

, A0
i

is given by

PR
i

⇠0, A0 :
i Pi

BR
i

⇠0
i

, A0
i

,
i

. (13)

It follows from Theorem 1 that,

PR
i

⇠0
i

, A0
i

x̃
i

A0
i

: O
i

O
i

x̃
i

, ⇠0
i

, A0
i

obeys ARC , (14)

where O
i

is the data set O
i

augmented by the (fictitious) observation ã
i

, ⇠0
i

, A0
i

. The following

proposition shows that PR
i

⇠0
i

;A0
i

coincides with the undominated elements with respect to RTST

i

.

Proposition 2. Suppose that O
i

obeys ARC. For any ⇠0 ⌅
i

, it holds that

PR
i

⇠0
i

, A0
i

x
i

A0
i

: x̂
i

A0
i

such that x̂
i

, ⇠0
i

RTST

i

x
i

, ⇠0
i

. (15)

Proof. It follows from (14) that (15) holds provided we can show the following: O
i

O
i

x̃
i

, ⇠0
i

, A0
i

violates ARC if and only if there is x̂
i

A0
i

such that x̂
i

, ⇠0
i

RTST

i

x̃
i

, ⇠0
i

. Let R

i

,

RT

i

, RTS

i

, and RTST

i

be the revealed preference relations derived from O
i

O
i

x̃
i

, ⇠0
i

, A0
i

; by

definition, these must contain the analogous revealed preference relations ofO
i

, i.e., R

i

, RT

i

, RTS

i

,

and RTST

i

. Suppose there is x̂
i

A0
i

such that x̂
i

, ⇠0
i

RTST

i

x̃
i

, ⇠0
i

and so x̂
i

, ⇠0
i

RTST

i

x̃
i

, ⇠0
i

.

9The environment ⇠

0
, A

0 may – or may not – be distinct from the ones already observed in the data set; the
latter can still be an interesting question since optimal choices are not unique.
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Figure 1: E A0 in Example 3

On the other hand, since x̂
i

A0
i

, we have x̃
i

, ⇠0
i

R

i

x̂
i

, ⇠0
i

. This is a violation of the property

(11) and, by Lemma 2, O
i

violates ARC. Conversely, suppose that O
i

O
i

x̃
i

, ⇠0
i

, A0
i

violates

ARC. Since O
i

obeys ARC, this violation can only occur in two ways: there is x̂
i

X
i

such that

x̃
i

, ⇠0
i

RT

i

x̂
i

, ⇠0
i

and x̂
i

, ⇠̄
i

RT

i

x̃
i

, ⇠̄
i

with either (1) x̂
i

x̃
i

and ⇠̄
i

⇠0
i

or (2) x̂
i

x̃
i

and ⇠̄
i

⇠0
i

. We need to show that x̃
i

is dominated (with respect to RTST

i

) by some element

in A0
i

. In either cases (1) or (2), since x̂
i

, ⇠̄
i

RT

i

x̃
i

, ⇠̄
i

, we obtain x̂
i

, ⇠0
i

RTS

i

x̃
i

, ⇠0
i

. If

x̂
i

A0
i

, we are done. If x̂
i

A0
i

then, given that x̃
i

, ⇠0
i

RT

i

x̂
i

, ⇠0
i

, there exists x̄
i

A0
i

such that

x̄
i

, ⇠0
i

RT

i

x̂
i

, ⇠0
i

. Thus x̄
i

, ⇠0
i

RTST

i

x̃
i

, ⇠0
i

.

It is very convenient to have Proposition 2 because computing RTST

i

is straightforward and

thus it is also straightforward to obtain the set of possible responses at a given treatment.

Example 3. Consider two observations as depicted in Figure 1, where A1
i

and A2
i

are the feasible

sets of agent i at observations 1 and 2 respectively, while ⇠1
i

and ⇠2
i

are the parameter values at each

observation. Let A0
i

be the blue segment in the figure. It is easy to check that observations 1 and

2 obey ARC, and that the set of possible best responses, PR
i

a0
i

;A0
i

, is the set indicated in the

figure. Notice that this set is not closed since a
i

PR
i

a0
i

, A0
i

. Indeed, a2
i

, ⇠1
i

RTS

1 a
i

, ⇠1
i

since

a2
i

, ⇠2
i

R

i

a
i

, ⇠2
i

. Furthermore, a1
i

, ⇠1
i

R

i

a2
i

, ⇠1
i

and so we obtain a1
i

, ⇠1
i

RTST

i

a
i

, ⇠1
i

.
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4 Revealed strategic complementarity

Let G G y, A
y,A Y A be a collection of games, as defined in the Section 2.2. We consider an

observer who has a set of observations drawn from this collection. Each observation consists of a

triple at, yt, At , where at is the action profile observed at the treatment yt, At Y A. The set

of observations is finite and is denoted by O at, yt, At

t T , where T 1, 2, ..., T .

Definition 2. A data set O at, yt, At

t T is consistent with strategic complementarity (or

SC-rationalizable) if there exists a profile of regular and SID preferences
i i N

such that each

observation constitutes a Nash equilibrium, i.e., for every t T , at
i

, at
i

, yt
i

i

x
i

, at
i

, yt for all

x
i

At

i

.

The motivation for this definition is clear. IfO is SC-rationalizable then we have found a profile of

preference
i i N

such that (i) at is a Nash equilibrium of G At, yt and (ii) the family of games G

G y, A
y,A Y A, where G y, A y

i i N

, A
i i N

,
i i N

exhibits strategic complementarity (in

the sense defined in Section 2.2).

For each agent i, we can define the agent data set O
i

at
i

, ⇠t
i

, At

i

T

t 1 induced by O, where

⇠t
i

at
i

, yt
i

. We say that O at, At, yt
t T obeys ARC if O

i

obeys ARC, for every agent i. It

is clear that O is SC-rationalizable if and only if O
i

is monotone-rationalizable for every agent i.

This leads to the following result, which is an immediate consequence of Theorem 1 and provides

with us with an easy-to-implement test of SC-rationalizability.

Theorem 2. The data set O at, yt, At

t T is SC-rationalizable if and only if it obeys ARC.

We turn now to the issue of out-of-sample equilibrium predictions. Given an SC-rationalizable

data set O at, At, yt
t T , the agent data set O

i

obeys ARC and so the set of regular and

SID preferences that rationalize O
i

, i.e., P
i

, is nonempty. The observed strategy profile at in O
is supported as a Nash equilibrium by any preference profile

i i N

in P :
i N

P
i

. For each

i i N

P , we know from Theorem B that the set of pure strategy Nash equilibria at another

game G y0, A0 , which we shall denote by E y0, A0,
i i N

, is nonempty and hence

E y0, A0 :
i i N P E y0, A0,

i i N
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is also nonempty. E y0, A0 is the set of possible Nash equilibria of the game G y0, A0 . This gives

rise to two related questions that we shall answer in this section: [1] how can we compute E y0, A0

from the data? and [2] what can we say about the structure of E y0, A0 ?

4.1 Computable characterization of E y0, A0

Recall that PR
i

⇠
i

, A0
i

denotes the possible best responses of player i in A0
i

to ⇠
i

a
i

, y0
i

(see

(13)). Given this, we define the joint possible response correspondence PR , y0, A0 : A0 A0 by

PR a, y0, A0 PR1 a 1, y
0
1;A

0
1 ,PR2 a 2, y

0
2, A

0
2 , ...,PR

n

a
n

, y0
n

, A0
n

. (16)

The crucial observation to make in computing E y0, A0 is that just as the set of Nash equilibria

in a game coincides with the fixed points of its joint best response correspondence, so the set of

possible Nash equilibria, E y0, A0 , coincides with the fixed points of PR , y0, A0 . Equivalently,

one could think of E y0, A0 as the intersection of the graphs of each player’s possible response

correspondence, i.e., E y0, A0
i N

�
i

y0, A0 , where

�
i

y0, A0 a
i

, a
i

A0 : a
i

PR
i

a
i

, y0
i

, A0
i

. (17)

Therefore, the computation of E A0; y0 hinges on the computation of PR
i

, y0
i

, A0 : A
i

A0
i

.

Two features of this correspondence together make it possible for us to compute it explicitly.

First, we know from Proposition 2 that, for any a
i

, the set PR
i

a
i

, y0
i

, A0
i

coincides exactly

with those elements in A0
i

that are not dominated (with respect to RTST

i

) by another element in

A0
i

. Since the data set is finite, PR
i

a
i

, y0
i

, A0
i

can be constructed after a finite number of steps

and, in fact, one could also show that it consists of a finite number of intervals.

Second, the correspondence PR
i

, y0
i

, A0 takes only finitely many distinct values. For j i, let

AT
j

a
j

X
j

: a
j

such that a
j

, a
j

at for some t T

We denote by I
j

the collection consisting of all subsets of A0
j

of the following two types: the

singleton sets ã
j

, where ã
j

is in the set A0
j

AT
j

A0
j

maxA0
j

minA0
j

and the interval sets
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a A0
j

: ã a b̃ , where ã A0
j

and b̃ is the element in A0
j

immediately above ã. We denote by

H
i

the collection of hyper-rectangles

I1 I2 ... I
i 1 I

i 1 ... I
N

where I
j

I
j

, for j i; note that these hyper-rectangles are subsets of
j i

A0
j

. Then one could

show that for any hyper-rectangle H
i

H
i

, the following property holds:

a
i

, a
i

H
i

PR
i

a
i

, y0
i

;A0
i

PR
i

a
i

, y0
i

;A0
i

. (18)

In other words, the correspondence PR
i

, y0
i

;A0
i

is constant within each hyper-rectangleH
i

. There-

fore, to compute this correspondence we need only find its value via (15) for a typical element within

each hyper-rectangle H
i

in the finite collection H
i

.

It follows from these two observations that the graph of player i’s possible response correspon-

dence (as defined by (17)) is also given by

�
i

y0, A0 a
i

, a
i

A0 : â
i

A0
i

such that â
i

, a
i

, y0
i

RTST

i

a
i

, a
i

, y0
i

(19)

and can be explicitly constructed. Furthermore, because PR
i

a
i

, y0
i

, A0
i

consists of a finite union

of intervals of A0
i

, �
i

y0, A0 is a finite union of hyper-rectangles in A0. The following theorem,

which we prove in the Appendix, summarizes these observations.

Theorem 3. Suppose a data set O at, yt, At T

t 1 obeys ARC and let y0, A0 Y A.

(i) PR
i

, y0
i

, A0
i

obeys (15) and (18) and, for any a
i j i

A0
j

, PR
i

a
i

, y0
i

, A0
i

consists of a

finite union of intervals of A0
i

.

(ii) The graph of PR
i

, y0
i

, A0
i

, �
i

y0, A0 , is a finite union of hyper-rectangles in A0. Conse-

quently, the set of possible Nash equilibria, E y0, A0
i N

�
i

y0, A0 , is also a finite union

of hyper-rectangles in A0.

Example 4. Figure 2(a) depicts two observations, a1, A1 and a2, A2 , drawn from two games

involving two players. This data set obeys ARC and we would like to compute E A0 , where
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Figure 2: E A0 in Example 4

A0
i

A1
i

A2
i

(for i 1, 2). First, we claim that the unshaded area in Figure 2(b) cannot be

contained in �1 A0 . Indeed, consider the point x x1, x2 in the unshaded area, at which

x1 a11, x2 a12, and x1 A1
1. Therefore, a11, a

1
2

R

1 x1, a
1
2 and so a11, a

1
2

RT

1 x1, a
1
2 . Since

x2 a12, a11, a
1
2

RTS

1 x1, a
1
2 , which means that x1, x2 �1 A0 . Using (19), it is easy to check

that �1 A0 corresponds precisely to the shaded area in Figure 2(b). Similarly, �2 A0 consists of

the shaded area in Figure 2(c). The common shaded area, as depicted with the darker shade in

Figure 2(d), represents E A0 �1 A0 �2 A0 . Note that the dashed lines are excluded from

E A0 , so this set is not closed.

4.2 The structure of E y0, A0

As we have pointed out in Section 2.2, the set of pure strategy Nash equilibria in a game with

strategic complementarity admits a largest and smallest Nash equilibrium, both of which exhibit

monotone comparative statics with respect to exogenous parameters. In this subsection, we show

that these properties are largely inherited by the set of predicted pure strategy Nash equilibria
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E y0, A0 . The next result (which we prove in the Appendix) lists the main structural properties of

E y0, A0 ; we have consciously presented them in a way that is analogous to Theorem B.

Theorem 4. Suppose a data set O at, yt, At

t T obeys ARC and let y0, A0 Y A. Then

E y0, A0 , the set of possible pure strategy Nash equilibria of the game G y0, A0 , is nonempty. Its

closure admits a largest and a smallest element, both of which are increasing in y0 Y .

Since A0 is a subcomplete sublattice of Rn, , any set in A0 will have a supremum and an

infimum in A0. Therefore, the principal claim in Theorem 4 is that the supremum and infimum of

the closure of E y0, A0 are contained in that set (and thus arbitrarily close to elements of E y0, A0 ):

to all intents and purposes, we could speak of a largest and a smallest possible Nash equilibrium.

Note that the analogous statement in Theorem B is stronger since it says that the set of pure

strategy Nash equilibria (even when it is not closed) has a largest and a smallest element; however,

Example 3 in Section 3.3 shows that the conclusion in Theorem 4 cannot be strengthened since in

that case the possible response set does not contain its supremum.

In the special but important case where A0 is finite, every subset of A0 is closed and so it follows

immediately from Theorem 4 that E y0, A0 is a closed set with a largest and smallest element.

The conclusion of Theorem 4 may also be strengthened in the case where the feasible action set

of every agent is unchanged throughout the observations, i.e. At A0 A for all t T . By

(14), a necessary and su�cient condition for ã
i

A0 to be contained in PR
i

a
i

, y0
i

;A0
i

is that

O
i

O
i

ã
i

, a
i

, y0
i

, A0
i

obeys ARC. If A0 At for all t T , then it is straightforward to

check that this is equivalent to ã
i

having the following property:

for all t T , ã
i

at
i

if a
i

, y0
i

⇠t
i

and ã
i

at
i

if a
i

, y0
i

⇠t
i

. (20)

It follows that PR
i

a
i

, y0
i

, A0
i

must be a closed interval in A0
i

and (by Theorem 3) its graph

�
i

y0, A0 is a finite union of closed hyper-rectangles. Therefore, E y0;A0
i N

�
i

y0, A0 is also

closed and, by Theorem 4, it must contain its largest and smallest element.
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5 Testing for complementarity with cross sectional data

So far in this paper we have assumed that the observer has access to panel data that gives the

actions of the same agent (or, in the case of a game, the same group of agents) across di↵erent

treatments. Oftentimes, data of this type is not available; instead, we only observe the actions of

di↵erent agents, with presumably heterogeneous preferences, subject to di↵erent treatments. It is

possible to extend our revealed preference analysis to this setting, provided we assume that the

distribution of preferences is the same across populations subject to di↵erent treatments or, put

another way, the assignment of agents or groups to treatments is random.

5.1 Stochastic monotone rationalizability

Suppose we observe a population of agents, whom we shall call population i, choosing actions from

a subset of a chain X
i

. Throughout this section (and unlike previous sections), we shall require that

X
i

be a finite chain. As usual, we assume agents choose from feasible sets that are intervals of X
i

.

Preferences are potentially a↵ected by a set of parameters ⌅
i

. At each observation t, all agents in

population i are subject to the same treatment ⇠t
i

, At

i

⌅
i

A
i

, though they may choose di↵erent

actions because they have di↵erent preferences. We assume that the true distribution of actions is

observable and given by µt

i

, where µt

i

x
i

denotes the fraction of agents who choose action x
i

; we

require µt

i

x
i

0 for all x
i

At

i

. The (cross sectional) data set for population i is a collection of

triples µt

i

, ⇠t
i

, At

i

, i.e., O
i

µt

i

, ⇠t
i

, At

i

t T , where T 1, 2, ..., T . Given O
i

, we denote the set

of observed treatments by E
i

, i.e., E
i

⇠t
i

, At

i

t T . We allow for the same treatment to occur

at di↵erent observations; it is possible that µt µs even though the treatments at observations t

and s are identical since we do not require agents to have unique optimal actions.10 We adopt the

convention of allowing the same treatment to be repeated in the set E
i

if it occurs at more than

one observation.

We call a
i

a1
i

, a2
i

, ..., aT
i

t T A
t

i

a monotone rationalizable path on E
i

if the induced ‘panel’

data set at
i

, ⇠t
i

, At

i

t T is monotone-rationalizable (in the sense defined in Section 3) and denote

10If it helps, one could think of the index t itself to be part of the treatment, which may influence an agent’s
selection rule amongst optimal choices, though it has no impact on the agent’s preference or the feasible alternatives,
which depend only on the ‘real’ treatment.
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the set of monotone rationalizable paths by A
i

. Since we allow for non-unique optimal choices, two

distinct monotone rationalizable paths may be rationalized by the same SID preference.

Definition 3. A data set O
i

µt, ⇠t
i

, At

i

t T is stochastically monotone rationalizable if there

exists a probability distribution Q
i

on A
i

, the set of monotone rationalizable paths on E
i

, such that

µt

i

x
i ai Ai

Q
i

a
i

1 at
i

x
i

for all t T and x
i

X
i

.

When there is no danger of confusion, we shall simply refer to a data set as monotone rational-

izable when it is stochastically monotone rationalizable. The definition says that the population i

can be decomposed into types corresponding to di↵erent monotone rationalizable paths, so that the

observed behavior of each type (across treatments) is consistent with maximizing an SID preference;

it captures the idea that treatments have been randomly assigned across the entire population by

requiring that the distribution of types is the same across treatments.11

Theorem 1 tells us that a path a
i

on E
i

is monotone rationalizable if and only if it is ARC-

consistent in the sense that the data set at
i

, ⇠t
i

, At

i

t T obeys ARC. Therefore, we have the following

result.

Theorem 5. A data set O
i

µt, ⇠t
i

, At

i

t T is monotone rationalizable if and only if there exists

a probability distribution Q
i

on A
i

, the set of ARC-consistent paths on E
i

, such that

µt

i

x
i

ai Ai

Q
i

a
i

1 at
i

x
i

for all t T and x
i

X
i

. (21)

This theorem sets out a procedure that could, in principle, allow us to determine the monotone-

rationalizability of a stochastic data set: first, we need to list all the ARC-consistent paths, and

then we solve the linear equations given by (21). Of course, whether or not this procedure is

implementable in practice will depend crucially on the number of observations, treatments, and

possible actions, which determines the size of the set of ARC-consistent paths.

11While our definition of monotone rationalizable paths excludes the possibility that some group in the population
may decide among non-unique optimal actions stochastically, the large population assumption means that this is
without loss of generality. If, say, 10% of the population is indi↵erent between two optimal actions a and a at some
observation t, and decides between them by flipping a fair coin, then it simply means that 5% will belong to a type
that chooses a at t and another 5% to a type that choose a at t. A data set drawn from a large population of agents
with heterogenous SID preferences who use stochastic selection rules (when there are multiple optimal actions) will
still be stochastically monotone rationalizable in the sense defined here.
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Given a monotone-rationalizable stochastic data set O
i

µt

i

, ⇠t
i

, At

i

t T , we may wish to

predict behavior at some given treatment, ⇠0
i

, A0
i

. The prediction consists of all those distributions

on A0
i

that are compatible with the data set. Formally, a distribution µ0
i

on X
i

is a possible

response distribution at ⇠0
i

, A0
i

if the augmented stochastic data set O µ0
i

, ⇠0
i

, A0
i

is monotone

rationalizable. It follows immediately from Theorem 5 that µ0
i

is a possible response distribution at

⇠0
i

, A0
i

if and only if there exists a probability distribution Q
i

on A
i

, the set of ARC-consistent

paths on the set of environments E
i

⇠0
i

, A0
i

, such that for every t T 0 and x
i

X
i

,

µt

i

x
i

ai Ai

Q
i

a
i

1 at
i

x
i

for all t T 0 and x
i

X
i

.12 (22)

It is worth noting that we allow for ⇠0
i

, A0
i

⇠t
i

, At

i

for some observation t and, indeed, it

is instructive to consider that case. Then µt

i

is clearly a possible response distribution but since

multiple optimal actions are permitted, the set of all such distributions can be strictly larger. In

other words, in determining whether or not a distribution is a possible response distribution, we

allow for the possibility that agents in the population with multiple optimal actions at the treatment

⇠t
i

, At

i

could switch to a di↵erent optimal action than the one taken at t .

Let us denote the set of possible response distributions by PRD
i

⇠0
i

, A0
i

. All the elements

of PRD
i

⇠0
i

, A0
i

can be obtained by solving the equations (22). The unknown variables in this

system are Q
i

a
i

for all a
i

A
i

and µ0
i

x
i

for all x
i

A0
i

, and the equations are linear in these

variables. Very conveniently, this implies that PRD
i

⇠0
i

, A0
i

is a convex set. We may be interested

in establishing the possible fraction of agents who will choose a particular action x̃
i

in the treatment

⇠0
i

, A0
i

. Since PRD
i

⇠0
i

, A0
i

is a convex set, this is given precisely by the closed interval

min µ0
i

x̃
i

: µ0
i

PRD
i

⇠0
i

, A0
i

, max µ0
i

x̃
i

: µ0
i

PRD
i

⇠0
i

, A0
i

The value of max µ0
i

x̃
i

: µ0
i

PRD
i

⇠0
i

, A0
i

can be obtained by solving the following linear

program:

maxµ0
i

x̃
i

subject to Q
i

a
i ai Ai

and µ0
i

x
i

xi A

0
i
satisfying (22).

12It follows from this definition that µt
i xi 0 if xi A

0
i .
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In a similar vein, we can calculate min µ0
i

ã
i

: µ0
i

PRD
i

⇠0
i

, A0
i

.

5.2 Stochastic strategic complementarity

The results on stochastic monotone rationalizability have an analog in a game-theoretic framework.

In this case, we assume that the population consists of groups of n players, with each group choosing

an action profile from their joint feasible set A
i N

A
i

, where A
i

is an interval of a finite chain

X
i

. The player in role i takes an action in A
i

; the player’s preference over his/her actions is a↵ected

by the actions of other players in that group and by some exogenous variable drawn from Y
i

. We

assume that the observer can distinguish amongst players in di↵erent roles in the game and can

observe their actions separately; for example, in a population of heterosexual couples, the observer

can distinguish between the ‘husband’ player and the ‘wife’ player and can observe their actions

separately.

At observation t, each group in the population chooses an action profile from the joint feasible

action set At A, with the exogenous parameter being yt Y
i N

Y
i

.; thus all groups in the

population are subject to the same treatment yt, At Y A, with observed di↵erences in action

profiles stemming from heterogenous preferences amongst players within each group and possibly

di↵erent equilibrium selection rules. We observe a probability distribution µt, with support on At,

where µt x denotes the fraction of groups in which the action profile x X is played. Therefore,

the data set can be written as O µt, yt, At

t T . We denote the set of observed treatments by

E, i.e., E yt, At

t T . The possibility of multiple equilibria means that it is both meaningful

and interesting to allow for the same treatment to appear at more than one observation. We

have explained this at length in Section 5.1 and we shall not repeat it here. We allow identical

treatments to appear more than once in E if they correspond to di↵erent observations. We refer

to a a1, a2, ..., aT
t T A

t as an SC-rationalizable path on E if the induced ‘panel’ data set

at, yt, At

t T is SC-rationalizable (in the sense defined in Section 4). The set of SC-rationalizable

paths on E is denoted by A.

Definition 4. A data set O µt, yt, At

t T is stochastically SC-rationalizable if there is a

probability distribution on A such that µt x a A Q a 1 at x for all t T and x X.
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Unless there is danger of confusion, we shall simply refer to a data set as SC-rationalizable when

it is stochastically SC-rationalizable. This definition says that the population can be decomposed

into ‘group types’ corresponding to di↵erent SC-rationalizable paths, so that we could interpret the

action profile for each group as a Nash equilibrium, with players having SID preferences that are

the same across observations; it captures the idea that treatments are randomly assigned across the

large population of groups, so that the distribution of types is identical across treatments. As in

the single agent case discussed in Section 5.1, the definition allows for groups belonging to di↵erent

types to have members with the same preferences, because of the possibility of multiple equilibria.

It is also worth emphasizing that the definition imposes no restrictions on what groups can be

formed; for example, if a data set consists of a population of heterosexual couples, then the set

of SC-rationalizable paths A allows for all possible matchings between di↵erent types of male and

female players.

By Theorem 2, a path on E is SC-rationalizable if and only if it is ARC-consistent in the sense

that at, yt, At

t T obeys ARC. This leads immediately to the following result.

Theorem 6. A data set O µt, yt, At

t T is SC-rationalizable if and only if there exists a

probability distribution Q on A , the set of ARC-consistent paths on E, such that

µt x
a A

Q a 1 at x for all t T and x X. (23)

Given an SC-rationalizable data set O µt, yt, At

t T , the out-of-sample predictions at some

given environment y0, A0 Y A can be obtained by identifying those distributions µ0 (which

must have their support on A0) such that the augmented stochastic data set O µ0, y0, A0 is

SC-rationalizable. We refer to µ0 as a possible (Nash) equilibrium distribution and denote the set

of these distributions by PED y0, A0 . It follows immediately from Theorem 6 that µ0 is a possible

equilibrium distribution if and only if there exists a probability distribution Q on A , the set of

ARC-consistent paths on the set of environments E y0, A0 , such that for every t T 0

and x X,

µt x
a A

Q a 1 at x for all t T 0 and x X. (24)
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All the elements of PED ⇠0, A0 can be obtained by solving the equations (24). The unknown

variables in this system are Q a for all a A and µ0 x for all x A0, and the equations are

linear in these variables, which implies that PED ⇠0, A0 is a convex set. It follows that the possible

fraction of the population playing a particular strategy profile x̃ at ⇠0, A0 will take values in an

interval, with its limits obtained by solving the appropriate linear programs. (See the analogous

result at the end of Section 5.1.)

If we wish, we can also form set estimates of the fraction of players in a particular role who

choose a given action. Formally, a distribution µ0 on X induces a distribution ⌫0
i

on the equilibrium

actions of player i; for each x̃
i

X
i

,

⌫0
i

x̃
i

x A

0:xi x̃i

µ0 x . (25)

The set of possible distributions on player i’s equilibrium actions, which we shall denote by

PED
i

⇠0, A0 is also convex. This follows immediately from the convexity of PED ⇠0, A0 . Since

PED
i

⇠0, A0 is a convex set, the predicted fraction of players in role i who choose a particular

action x̃
i

from A0
i

is given precisely by the closed interval

min ⌫0
i

x̃
i

: ⌫0
i

PED
i

⇠0
i

, A0
i

, max ⌫0
i

x̃
i

: ⌫0
i

PED
i

⇠0
i

, A0
i

.

By (25), the value of max ⌫0
i

x̃
i

: ⌫0
i

PED
i

⇠0
i

, A0
i

can be easily obtained by solving the following

linear program:

x A

0:xi x̃i
µ0
i

x subject to Q a a A and µ0 x
i

xi A

0
i
satisfying (24).

In a similar vein, we can calculate min ⌫0
i

x̃
i

: ⌫0
i

PED
i

⇠0
i

, A0
i

.

6 Application: Smoking Decisions in Married Couples

We now apply the results of Section 5.2 to the analysis of smoking decisions among married couples.

Each married couple is modeled as a group whose members decide whether or not to smoke, with

the smoking decision of each person depending on both the smoking decision of his/her partner
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Figure 3: Conditional Smoking Rates

and the smoking policy at his/her workplace. We use a data set that provides us with the smoking

decision and the workplace smoking policy for each member of a large population of married couples.

Di↵ering workplace smoking policies provide the treatment variation needed for testing the presence

of strategic complementarity. Similar data has also been used by Cutler and Glaeser (2010). As we

do, they test for (and find) the presence of interaction in smoking behavior among married couples,

using the exogenous variation in workplace smoking policies as an instrument. Their work di↵ers

from ours in that they use a reduced form parametric model of smoking behavior.

6.1 Data

We employ the Tobacco Use Supplement of the Current Population Survey (TUS-CPS) to get infor-

mation on both smoking decisions and workplace smoking policies. This is an NCI-sponsored survey

of tobacco use that has been administered as part of the US Census Bureau’s Current Population

Survey every 2 to 3 years since 1992. We focus on the period 1992-1993 because, in contrast to more

recent years, a significant proportion of workplaces then did not have smoking restrictions, which

guarantees that we have enough treatment variation. While the smoking information is obtained

from everyone in our population of interest, the question on workplace smoking policy is posed

only to indoor workers. Thus, we restrict attention to married couples where both members work

indoors. After eliminating from our sample all couples where at least one member did not reply to

all the questions of interest, we have 5,363 married couples across the US.

Within this sample, the smoking rate is 23.8% among the men and 18.7% among the women.

Smoking is permitted in 19.7% of husbands’ workplaces and 15% of wives’ workplaces. Figure 3

displays the conditional probabilities of smoking given partner’s smoking behavior (left panel) and

smoking policy at work (right panel). As we can see, irrespective of gender, the probability of
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Figure 4: Joint Distribution of Smoking Choices Across Smoking Policies

smoking is larger when either the partner smokes or when smoking is permitted in the workplace.

Overall, the fraction of spouses that make the same smoking choice —either both smoke or do not

smoke— is around 80% of the whole sample. These figures are at least suggestive of the influence

of spousal behavior and workplace policy on smoking decisions. To examine this issue more closely,

we now apply the test developed in Section 5.2.

6.2 Findings

Figure 4 displays the distribution of joint choices regarding smoking decisions for four di↵erent

workplace smoking policies, which serve as treatments in our analysis. As before, we use µ to

indicate the probability of each action profile for each workplace smoking policy. The first argument

of µ takes the value of S if the husband smokes and N otherwise; the second argument indicates the

smoking decision of his wife. Similarly, the first argument in Workplace Smoking Policy takes the

value of 1 if smoking is permitted in the working place of the husband and 0 otherwise; the second

argument indicates the smoking policy at the wife’s workplace. In this application, the choice set

of each person is N,S and it remains the same across observations.

We use Theorem 6 to test if this data set is SC-rationalizable. (Appendix II gives a fuller

description of the procedure.) Notice that in this application there are a priori 44 256 group

paths, since for each of the four possible treatment values, there are four joint choices that a

married couple can make. One could check that 64 of these paths are SC-rationalizable. For our

test to be valid, we must assume that the population is randomly assigned to these four treatments,
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Figure 5: Closest SC-rationalizable distribution of smoking choices

so that the distribution of the 64 types is the same across treatments. For now at least, let us also

ignore issues of sample size and treat the observations in Figure 4 as the true distribution of joint

actions across the four treatments. In that case, we can test for SC-rationalizability by checking if

there is a positive solution to the linear system (23), where the solution vector, if it exists, gives

the proportion of the population belonging to each of the 64 types. Performing this test, we find

that there is in fact no solution to the linear system, so the data set is not SC-rationalizable.

This may come as a surprise, since the number of unknowns (64) far exceeds the number of

linear constraints and it is tempting to think that the conditions are very permissive. In fact,

there is at least one easy-to-understand reason why the data set displayed in Figure 4 is not SC-

rationalizable. Notice from Figure 4 that µ N, S 1, 0 9.1% 8.6% µ N, S 0, 1 . This is

impossible because, to be consistent with strategic complementarity, any couple type that selects

N,S under the smoking policy 1, 0 must select N,S again under the smoking policy 0, 1 .13

Interestingly, if we solve for the data set that is SC-rationalizable and closest (as measured by the

sum of square deviations) to the one actually observed, the solution, as displayed in Figure 5, sets

µ N, S 1, 0 µ N, S 0, 1 8.8%.

If we compare the entries in Figures 4 and 5, we see immediately that they are quite close,

which naturally makes us wonder whether the observed violation of SC-rationalizability is in fact

significant. To address this issue, we adopt the approach recently proposed by Kitamura and Stoye

13Let h be the husband’s preference and w the wife’s preference. Then N,S 1, 0 h S, S 1, 0 implies
that N,S 0, 1 h S, S 0, 1 , so S, S 0, 1 is ruled out as an equilibrium. Furthermore, N,S 1, 0 h S, S 1, 0
implies N,N 0, 1 h S,N 0, 1 , so S,N 0, 1 is impossible as well. Turning now to the wife, since N,S 1, 0 w

N,N 1, 0 , we obtain N,S 0, 1 w N,N 0, 1 , so N,N 0, 1 cannot be an equilibrium.
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(2013); they develop a method of evaluating the statistical significance of a data set violating a set of

linear constraints that directly applies to our framework.14 Roughly speaking, the test assumes that

the closest compatible distribution displayed in Figure 5 is the true population distribution, and

uses a bootstrap procedure to calculate the likelihood of getting a sample like the one we observe.

By applying their test, we find that the probability of getting our sample (or a more extreme one),

assuming that our modelling restrictions are true, is 0.3795. The latter corresponds to the p-value

for the null hypothesis that our modelling assumptions are true. This means that we cannot reject

SC-rationalizability at a significance level of 5% or 10%. (See Appendix II for a fuller description

of the Kitamura-Stoye procedure and our implementation.)

To examine the issue more closely, we also divided the entire sample into three smaller sub-

samples, according to the educational attainment of the couples: (i) both spouses have high educa-

tion levels (measured as having at least some college education); (ii) both have low education levels;

and (iii) one spouse has high education level and the other a low education level. We find that the

choice probabilities of the group where both spouses have high education levels are directly con-

sistent with our modelling restrictions, i.e., the observed choice probabilities are SC-rationalizable.

The other two groups are not directly consistent with the model, with the p-values being 0.509

and 0.127 respectively for the couples with low education and couples with mixed education levels

respectively.

Appendix I

We have shown in Lemma 1 that RT

i

has the interval property. The following extension of that

result is needed for the proofs of Lemmas 2 and 3.

Lemma A1: The binary relations RTS

i

, RTS

i

, and RTST

i

on X
i

⌅
i

have the interval property.

Proof. Let x
i

x
i

x
i

. (The case where x
i

x
i

x
i

can be proved in a similar way.) If

x
i

, ⇠
i

RTS

i

RTS

i

x
i

, ⇠
i

holds, there exists some ⇠
i

⇠
i

such that x
i

, ⇠
i

RT

i

x
i

, ⇠
i

. By

the interval property of RT

i

, we obtain x
i

, ⇠
i

RT

i

x
i

, ⇠
i

. Since x
i

x
i

and ⇠
i

⇠
i

, we

have that x
i

, ⇠
i

RTS

i

RTS

i

x
i

, ⇠
i

. So we have shown that RTS

i

and RTS

i

have the interval

14Kitamura and Stoye (2013) apply their test to the consumer utility-maximization problem.
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property.

If x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

, there exists a sequence z1
i

, z2
i

, ..., zk
i

such that

x
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zk
i

, ⇠
i

RTS

i

x
i

, ⇠
i

.

Letting z0
i

x
i

and zk 1
i

x
i

, since x
i

x
i

x
i

, we can find some 0 m k such that

zm
i

x
i

zm 1
i

. By the interval property of RTS

i

, we obtain zm
i

, ⇠
i

RTS

i

x
i

, ⇠
i

. Thus

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

since x
i

, ⇠
i

RTST

i

zm
i

, ⇠
i

RTS

i

x
i

, ⇠
i

.

Proof of Lemma 2: We first prove that (11) holds. (11) is equivalent to RTS

i

being cyclically

consistent, i.e.,

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zk
i

, ⇠
i

zk
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

. (26)

Cyclical consistency can in turn be equivalently re-formulated as the following:

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zk
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

(27)

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zk
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

Thus, whenever there is a cycle like (27), it must be the case that

z1
i

, ⇠
i

RT

i

z2
i

, ⇠
i

RT

i

... RT

i

zk
i

, ⇠
i

RT

i

z1
i

, ⇠
i

We prove (11) by induction on the length of the chain, k, on the left side of (26). Whenever (26)

holds for chains of length k or less (equivalently, whenever the cycles in (27) have length k or less),

we say that RTS

i

is k-consistent. For 2-consistency, we need to show that

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

z2
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

.

Suppose that z1
i

z2
i

; the case of z1
i

z2
i

can be dealt with in a similar way. By definition,

if z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

then there is ⇠
i

⇠
i

such that z1
i

, ⇠
i

RT

i

z2
i

, ⇠
i

. On the other hand,
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if z2
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

, then there is ⇠
i

⇠
i

such that z2
i

, ⇠
i

RT

i

z1
i

, ⇠
i

and so we obtain a

violation of ARC.

Suppose that RTS

i

is k-consistent for all k k̄. To show that k̄-consistency holds, suppose the

left side of (26) holds for k k̄ and z1
i

zk̄
i

. Clearly, there must be m k̄ such that zm
i

zk̄
i

and

zm 1
i

i

zk̄
i

. We consider two cases separately: (A) zm
i

z1
i

and (B) zm
i

z1
i

. In case (A), by the

interval property of RTS

i

, we obtain zm
i

, ⇠
i

RTS

i

zk̄
i

, ⇠
i

. By way of contradiction, suppose also

that zk̄
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

. Then the interval property of RTS

i

guarantees that zk̄
i

, ⇠
i

RTS

i

zm
i

, ⇠
i

and so we obtain a violation of 2-consistency. For case (B), since zm
i

, ⇠
i

RTS

i

zm 1
i

, ⇠
i

, the interval

property guarantees that zm
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

. So we obtain the cycle

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zm
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

(28)

which has length strictly lower than k̄. By the induction hypothesis, we obtain

z1
i

, ⇠
i

RTS

i

z2
i

, ⇠
i

RTS

i

... RTS

i

zm
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

and so we can replace each RTS

i

in (28) by RT

i

. Furthermore, zm
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

guarantees

that zm
i

, ⇠
i

RTS

i

zm 1
i

, ⇠
i

, by the interval property of RTS

i

. Therefore, z1
i

, ⇠
i

RT

i

xm 1
i

, ⇠
i

and, by the interval property of RT

i

, we obtain z1
i

, ⇠
i

RT

i

xk̄

i

, ⇠
i

. 2-consistency then ensures

that zk̄
i

, ⇠
i

RTS

i

z1
i

, ⇠
i

. This completes the proof that (11) holds.

By definition, RTST

i

obeys SSCD if whenever x
i

x
i

and ⇠
i

⇠
i

or x
i

x
i

and ⇠
i

⇠
i

, then

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

x
i

, ⇠
i

RTST

i

x
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, ⇠
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.

We shall concentrate on the case where x
i

x
i

; the other case has a similar proof. If x
i

, ⇠
i

RTS

i

x
i

, ⇠
i

, then we know that there is zj
i

(for j 1, 2, ..., k) such that

x
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x
i

, ⇠
i

. (29)

We can also choose a chain with the property that (writing z0
i

x
i

and zk 1
i

x
i

) zm
i

, ⇠
i

RTS

i

zm
i

, ⇠
i

for m m 1; in other words, no link in the chain can be dropped. We claim that, for
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such a chain, we must have

x
i
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i
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i

... zk
i

x
i

. (30)

Once this is established, the rest is straightforward: since RTS

i

obeys SSCD, (29) and (30) imply
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It remains for us to establish (30). If this is false then there is m such that zm 1
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.
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Since RTS
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. In particular, zm n 1
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and thus we can shorten (29) to
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i

RTS

i

x
i

, ⇠
i

which contradicts our assumption that no link in the chain can be dropped.

Proof of Lemma 3: We first show that
i

is a preference that rationalizes O
i

. Clearly,
i

is

complete and reflexive, so to demonstrate that it is a preference we need only show that it is

transitive. Indeed, suppose

a
i

, ⇠
i

i

b
i

, ⇠
i

i

c
i

, ⇠
i

i

a
i

, ⇠
i

.

There are only four fundamentally distinct cases we need to consider:

Case 1. None of the three elements are related by RTST

i

. Given the definition of
i

, this means

that a
i

b
i

c
i

a
i

, which is impossible.
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Case 2. a
i

b
i

c
i

, a
i

, ⇠
i

kRTST

i

b
i

, ⇠
i

, b
i

, ⇠
i

kRTST

i

c
i

, ⇠
i

, and c
i

, ⇠
i

RTST

i

a
i

, ⇠
i

. This is

again impossible since the interval property of RTST

i

will imply that c
i

, ⇠
i

RTST

i

b
i

, ⇠
i

.

Case 3. a
i

b
i

, a
i

, ⇠
i

kRTST

i

b
i

, ⇠
i

, b
i

, ⇠
i

RTST

i

c
i

, ⇠
i

RTST

i

a
i

, ⇠
i

. This is also impossible

because, by the transitivity of RTST , we obtain b
i

, ⇠
i

RTST

i

a
i

, ⇠
i

.

Case 4. a
i

, ⇠
i

RTST

i

b
i

, ⇠
i

RTST

i

c
i

, ⇠
i

RTST

i

a
i

, ⇠
i

. By (11), this is only possible if

a
i

, ⇠
i

RT

i

b
i

, ⇠
i

RT

i

c
i

, ⇠
i

RT

i

a
i

, ⇠
i

,

but then we also obtain, by the transitivity of RT

i

, a
i

, ⇠
i

RT

i

c
i

, ⇠
i

and, hence, a
i

, ⇠
i

i

c
i

, ⇠
i

.

Lastly, since RTST

i

by construction, it is clear that
i

rationalizes O
i

.

To show that
i

obeys SSCD, let x
i

x
i

and ⇠
i

⇠
i

; then

x
i

, ⇠
i i

x
i

, ⇠
i

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

x
i

, ⇠
i i

x
i

, ⇠
i

,

in which the first implication follows from the definition of
i

, the second implication from the

SSCD property of RTST

i

, and the third from the fact that
i

contains RTST

i

(so
i

extends

RTST

i

in the sense of (10)). The last claim is true because if x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

, then Lemma 2

says that x
i

, ⇠
i

RTST

i

x
i

, ⇠
i

; thus x
i

, ⇠
i

i

x
i

, ⇠
i

and we obtain x
i

, ⇠
i

i

x
i

, ⇠
i

.

It remains for us to show that, for every ⇠
i

⌅
i

, BR ⇠
i

, K, is nonempty and finite, where

K X
i

and K is compact in R. If K at
i

for every t T , then, it follows from the definition of

i

that m, ⇠
i

i

z
i

, ⇠
i

, where m minK and z
i

K. In this case, m is the only maximiser

of
i

in K. Suppose that K at
i

for some t. Since there are a finite number of observations, we

can find some as
i

K such that as
i

, ⇠
i

i

at
i

, ⇠
i

for every at
i

K. We claim that either m or as
i

maximises
i

in K for ⇠
i

, so that BR ⇠
i

, K, is indeed nonempty and finite. There are two cases

to consider.

Suppose m, ⇠
i

i

as
i

, ⇠
i

and there is z
i

K such that z
i

, ⇠
i

i

m, ⇠
i

. Then, since m z
i

,
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it must hold that z
i

, ⇠
i

RTST

i

m, ⇠
i

and there is t T such that z
i

at
i

. Consequently,

at
i

, ⇠
i

i

m, ⇠
i

i

as
i

, ⇠
i

i

at
i

, ⇠
i

,

which is a contradiction. Therefore, m, ⇠
i

i

x
i

, ⇠
i

for all x
i

K. Now suppose as
i

, ⇠
i

i

m, ⇠
i

. For every x
i

m,n , either as
i

, ⇠
i

RTST

i

x
i

, ⇠
i

, in which case as
i

, ⇠
i

i

x
i

, ⇠
i

, or

as
i

, ⇠
i

kRTST

i

x
i

, ⇠
i

, in which case we have as
i

, ⇠
i

i

m, ⇠
i

i

x
i

, ⇠
i

. Thus as
i

, ⇠
i

i

x
i

, ⇠
i

for all x
i

K.

Proof of Theorem 3. Part (ii) follows straightforwardly from part (i), so we shall focus on

proving (i), which consists of three claims. Proposition 2 says that (15) holds. To see that (18)

holds, first note that ã
i

PR
i

a
i

, y0
i

, A0
i

if and only if O
i

O
i

ã
i

, a
i

, y0
i

, A0
i

violates

ARC. Since H
i

is not a singleton, it must be an interval and so there is no a
i

such that a
i

, a t

i

for some t T . Therefore, O
i

violates ARC if and only if there is â
i

A0
i

and ā
i

such that

â
i

, ā
i

, ȳ
i

RT

i

ã
i

, ā
i

, ȳ
i

with either (1) â
i

ã
i

and ā
i

, ȳ
i

a
i

, y0
i

or (2) â
i

ã
i

and

ā
i

, ȳ
i

a
i

, y0
i

. Note that there is t T such that â
i

, ā
i

at; in particular, this means that

ā
i j i

AT . It follows from our definition of H
i

that ā
i

, ȳ
i

a
i

, y0
i

if ā
i

, ȳ
i

a
i

, y0
i

and ā
i

, ȳ
i

a
i

, y0
i

if ā
i

, ȳ
i

a
i

, y0
i

. Thus O
i

O
i

ã
i

, a
i

, y0
i

, A0
i

also violates ARC.

We conclude that ã
i

PR
i

a
i

, y0
i

, A0
i

if ã
i

PR
i

a
i

, y0
i

, A0
i

, which establishes (18).

Lastly, we show that PR
i

a
i

, y0
i

, A0
i

consists of a finite union of intervals of A0
i

. This is

equivalent to showing that A0
i

PR
i

a
i

, y0
i

, A0
i

is a finite union of intervals; an element ã
i

is

in this set if and only if there is t T such that at
i

A0
i

and at
i

, ⇠0
i

RTST

i

ã
i

, ⇠0
i

, where

⇠0
i

a
i

, y0 . This is turns holds if and only if is s T such that either (1) at
i

, ⇠0
i

RTST

i

as
i

, ⇠0
i

and as
i

, ⇠0
i

RTS

i

ã
i

, ⇠0
i

or (2) at
i

, ⇠0
i

RTST

i

as
i

, ⇠0
i

and as
i

, ⇠0
i

RT

i

ã
i

, ⇠0
i

. Notice for a fixed

s T , the sets a
i

A0
i

: as
i

, ⇠0
i

RTS

i

a
i

, ⇠0
i

and a
i

A0
i

: as
i

, ⇠0
i

RT

i

a
i

, ⇠0
i

both con-

sist of intervals, because of the interval property on RTS

i

and RT

i

respectively. It follows that

A0
i

PR
i

a
i

, y0
i

, A0
i

is a finite union of intervals.

The proof of Theorem 4 uses the following lemma.

Lemma A2: Suppose O at, yt, At T

t 1 obeys ARC and let A0 A. Then the map p
i

: A0
i

Y

A0
i

given by

p
i

a
i

, y
i

supPR
i

a
i

, y
i

, A0
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has the following properties: (i) it is increasing in a
i

, y
i

A0
i

Y
i

; (ii) for a
i

and a
i

in

H
i

, p
i

a
i

, y
i

p
i

a
i

, y
i

; and (iii) if, for some ā
i

, ȳ
i

, p
i

ā
i

, ȳ
i

PR
i

ā
i

, ȳ
i

, A0 and for

some â
i

, ŷ
i

ā
i

, ȳ
i

, p
i

ā
i

, ȳ
i

p
i

â
i

, ŷ
i

, then p
i

â
i

, ŷ
i

PR
i

â
i

, ŷ
i

, A0 .

Remark: In a similar way, we define p
i

: A0
i

Y
i

A0
i

by p
i

a
i

, y
i

inf PR
i

a
i

, y
i

, A0 . This

function will obey properties (i) and (ii) and, instead of property (iii), it will have the following

property (iii) : if, for some ā
i

, ȳ
i

, p
i

ā
i

, ȳ
i

PR
i

ā
i

, ȳ
i

, A0 and for some â
i

, ŷ
i

ā
i

, ȳ
i

,

p
i

ā
i

, ȳ
i

p
i

â
i

, ŷ
i

, then p
i

â
i

, ŷ
i

PR
i

â
i

, ŷ
i

, A0 .

Proof. Since PR
i

a
i

, y
i

, A0 is the union of a collection of best response correspondences (see

(13)), each of which is increasing in a
i

, y
i

, p
i

must be increasing. Claim (ii) is an immediate

consequence of (18) (which was proved in Theorem 3). Lastly, if p
i

ā
i

, ȳ
i

PR
i

ā
i

, ȳ
i

, A0

then there is
i

P
i

such that p
i

ā
i

, ȳ
i

BR
i

ā
i

, ȳ
i

, A0
i

,
i

. Since the best response corre-

spondence is increasing, there is a
i

BR
i

â
i

, ŷ
i

, A0
i

,
i

, and thus in PR
i

â
i

, ŷ
i

, A0
i

, such that

a
i

p
i

ā
i

, ȳ
i

. This establishes (iii).

Proof of Theorem 4: We have already explained at the beginning of Section 4 why E y0, A0

is nonempty. We shall confine our attention to showing that max E y0, A0 exists, where E y0, A0

refers to the closure of E y0, A0 ; the proof for the other case is similar.15 Firstly, note that the prop-

erties of p
i

listed in Lemma A2 guarantee that there exists a sequence of functions pk
i

, y0
i

, A0
i

k N

selected from PR
i

, y0
i

, A0
i

with the following properties: (i) for a
i

and a
i

in H
i

, pk
i

a
i

, y0
i

pk
i

a
i

, y0
i

; (ii) pk
i

a
i

, y0
i

, A0
i

is increasing in a
i

and in k; (iii) pk
i

a
i

, y0
i

, A0
i

p
i

a
i

, y0
i

, A0
i

if p
i

a
i

, y0
i

, A0
i

PR
i

a
i

, y0
i

, A0
i

; and (iv) lim
k

pk
i

a
i

, y0
i

, A0
i

p
i

a
i

, y0
i

, A0
i

. In other

words, there is a sequence of increasing selections from PR
i

, y0, A0 that has p
i

a
i

, y0, A0 as it

limit, with the sequence being exactly equal to p
i

a
i

, y0
i

, A0
i

if the latter is a possible response of

player i.

The function pk a, y0, A0 pk
i

a
i

, y0
i

, A0
i

i N

is increasing in a, since pk
i

is increasing in a
i

.

By Tarski’s fixed point theorem, pk has a largest fixed point, which we denote by xk y0, A0 . Since

15It is worth pointing out an obvious first approach that will not work. Given pi , we can define, for each a A

0,
p a, y

0
pi a i, y

0
i i N , and since pi is increasing in a i, so p a, y

0 is increasing in a. By Tarski’s fixed

point theorem, p , y

0 will have a fixed point and indeed a largest fixed point a ; thus the existence of max E y

0
, A

0

is ensured if it could be identified with a . However, they are not generally the same points: it is straightforward to
construct an increasing (but not compact-valued) correspondence such that its largest fixed point does not coincide
with the largest fixed point of its supremum function. Our proof takes a di↵erent route.
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pk
i

, y0
i

, A0
i

is a selection from PR
i

, y0
i

, A0
i

, xk y0, A0 E y0, A0 . By the monotone fixed points

theorem (see Section 2), the sequence xk y0, A0 is increasing with k. Since A0 is compact, this

sequence must have a limit. This limit, which we denote by a y0, A0 , lies in E y0, A0 .

We claim that a y0, A0 x̃, for any x̃ E y0, A0 . Indeed, since x̃
i

PR
i

x̃
i

, y0
i

, A0
i

for all

i N , for k su�ciently large, pk
i

x̃
i

, y0
i

, A0
i

x̃
i

. Now consider the map pk confined to the domain

S
i N

a
i

A0
i

: a
i

x̃
i

. Since pk is increasing, the image of pk also falls on S; in other words,

pk can be considered as a map from S to itself. It is also an increasing map and, by Tarski’s fixed

point theorem will have a largest fixed point. The largest fixed point of pk restricted to S must

again be xk y0, A0 and it follows from our construction that xk y0, A0 x̃. In turn this implies

that a y0, A0 x̃. So a y0, A0 is an upper bound of E y0, A0 and thus also an upper bound

of E y0, A0 . Given that a y0, A0 E y0, A0 , we conclude that a y0, A0 max E y0, A0 .

To see that a y, A0 is increasing with respect to the parameter, consider y y . Given

the properties of p
i

listed in Lemma A2, we can choose functions pk
i

, y
i

, A0
i

k N selected from

PR
i

, y
i

, A0
i

(for y
i

y
i

and y
i

) satisfying properties (i) – (iv) and, in addition, pk
i

a
i

, y
i

, A0
i

pk
i

a
i

, y
i

, A0
i

for all a
i

. The map pk , y
i

, A0
i

is increasing and will have a largest fixed point

xk y 0 which, by the monotone fixed points theorem satisfies xk y 0 xk y 0 . Taking limits as

k , we obtain a y 0 a y 0 .

Appendix II

AII.1 Data and Testing Procedures

We use the Tobacco Use Supplement to the Current Population Survey (TUS-CPS) to get informa-

tion on both smoking decisions and workplace smoking policies. This is an NCI-sponsored survey

of tobacco use that has been administered as part of the US Census Bureau’s Current Population

Survey every 2 to 3 years from 1992-1993. We focus on years 1992-1993 because, unlike more recent

periods, there were still significant numbers of workplaces that permitted smoking. This guaran-

tees we have enough treatment variation. While smoking information is asked of everyone in our

population of interest, the smoking ban question is asked only of indoor workers. Thus, we restrict
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attention to married couples where both members work indoor. After eliminating from our sample

all couples where at least one member does not reply to the questions of interest, we have 5,363

married couples across the US. For 2,643 couples, both members have high education levels (the

precise sense in which we explain later), for 1,422 couples, both members have low education levels,

and for the remaining 1,298 couples, one spouse has a high education level and the other low.

We merge the relevant information of years 1992 and 1993. We first recover the information for

September 1992 and add the information for January 1993 and July 1993 regarding spouses that do

not appear in the previous period/s of time. We tabulate responses according to the variables from

the Data Dictionary of the Current Population Survey for years 1992-1993 that we detail next.

Married Couples We consider as married couples all pairs where one of them is the reference

person and the other one responds either 3. Husband or 4. Wife to question A-RRP Item 18B

(Relationship to reference person).

Smoking Decisions We assign the value 0 (does not smoke) to all persons that respond either 2.

No to question A-S32 (Has... smoked at least 100 cigarettes in his/her entire life?) or 3. Not at all

to question A-S34 (Does... now smoke cigarettes every day, some days, or not at all?). We assign

value 1 (smokes) to all persons that respond either 1. Every day or 2. Some days to question A-S34

(Does... now smoke cigarettes every day, some days, or not at all?).

Smoking Restrictions at Workplace We assign the value 0 (smoking restrictions at workplace)

to all persons that respond 1. Yes to question A-S68 (Does your place of work have an o�cial policy

that restricts smoking in anyway?). We assign value of 1 (no smoking restrictions at workplace) to

all persons that respond 2. No to question A-S68 (Does your place of work have an o�cial policy

that restricts smoking in anyway?).

Education We consider as high educated couples (HE) all those married couples (defined above)

where both members report that they have high education levels; specifically these are couples

where both members respond 40. Some college but not degree or above to question A-HGA Item

18H (Education attainment). We consider as low educated couples (LE) all those married couples

where both members respond strictly below 40. Some college but not degree to question A-HGA

Item 18H (Education attainment). We consider as mixed educated couples (Mix) all married couples
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Figure 6: Joint Distribution of Smoking Choices Across Smoking Policies (HE)
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Figure 7: Joint Distribution of Smoking Choices Across Smoking Policies (Mix)

where one member has a high education level and the other a low education level.

We have already displayed the survey results for all couples in Figure 4 in the main body of

the paper. Figures 6, 7, and 8 show the corresponding results when the survey responses are

disaggregated into HE, LE, and Mix couples.

AII.2 Test and Closest Compatible Distribution

Testing whether a data set is consistent with strategic complementarity involves checking whether

a system of linear equations

Ax B. (31)

has a positive solution x. We describe next all the components of this system.
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Figure 8: Joint Distribution of Smoking Choices Across Smoking Policies (LE)

Matrix A This matrix is composed of 0’s and 1’s and describes the behavior (in terms of choices)

of all SC-rationalizable group types. Recall that a group type specifies the profile of choices that the

group makes for each possible vector of parameter values. In this case, A is a 16 64-matrix. Each

row in matrix A corresponds to one of the 16 possible combinations of (joint) smoking choices and

treatment values. An ijth element of matrix A takes value 1 if the jth group selects the smoking

decision under the treatment corresponding to that row.

Vector B The size of this column vector is 16. It is composed of 4 conditional distributions. Each

conditional distribution specifies the fraction of groups that, for a given treatment, make each of

the four possible joint decisions.

Vector x This size of this column vector is 64. It represents a possible probability distribution

over the set of SC-rationalizable group types.

We implement our test by using Matlab. Specifically, we use the program

x linprog lb, , , A,B, lb,

to check whether system (31) has a positive solution in x. In this specification, inputs A and B are

described as above and lb corresponds to a column vector of 64 zeros.

For those data vectors B that do not pass this test, we use program lsqnonneg in Matlab to find

the positive vector x, with its components adding up to 1, that minimize B Ax B Ax .
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AII.3 Small Sample Inference Procedure

As Kitamura and Stoye (2013) explain, the null hypothesis is equivalent to

(H) min
x R K B Ax B Ax 0

where K is the number of SC-rationalizable group types (64 in our case). A natural sample

counterpart of the objective function in H is given by

B Ax B Ax

where B estimates B by sample choice frequencies. Normalizing the latter by sample size N , we

get

J
N

N min
x R K B Ax B Ax .

Let x be any solution to this problem. If Ax B, so that the observed choices are compatible

with our restrictions, then J
N

0 and the null hypothesis cannot be rejected.

Kitamura and Stoye (2013) proposes the following bootstrap algorithm to test H:

(i) Obtain a vector x that solves

J
N

N min
x ⌧N164 R64 B Ax B Ax

and compute C
⌧N Ax . In our application, we let ⌧

N

lnN N 64, where N is the minimum

out the number of couples in each of the four treatments. (As Kitamura and Stoye (2013) explain,

the tuning parameter ⌧
N

plays the role of a similar tuning parameter in the moment selection

approach.)

(ii) Calculate the boostrap estimators under the restriction

B r

⌧N
B r B C

⌧N r 1, ..., R

where C
⌧N derives from step (i) and B r is a re-sampled choice probability vector obtained via

standard nonparametric boostrap. In addition, R is the number of boostrap replications. In the
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paper, we let R 2000.

(iii) Calculate the boostrap test statistic by solving the following problem

J
r

N

⌧
N

N min
x ⌧N164 R64 B r

⌧N
Ax B r

⌧N
Ax

for r 1, ..., R.

(iv) Use the empirical distribution of J r

N

⌧
N

, r 1, ..., R, to obtain the critical value of J
N

.

We implement this procedure four times, namely, on all married couples, HE couples, LE couples,

and Mix couples. In the case of HE couples, the vector B is directly consistent, so the p-value of

the test for this group is 1 and we cannot reject the null hypothesis. The p-values for the data set

corresponding to all married couples is 0.3795, the one for LE is 0.509, and the one for Mix is 0.127.
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